
Implement Detail Enhancement Algorithm on
FPGA for Real-Time and Energy-Efficient

Embedded Systems
Le Thanh Tung†, Le Thanh Bang†, Pham Trong Thuy†, Nguyen Duc Hoan†, Vuong Dang Huy†

† Center of Engineering and Technologies, Viettel High Technologies Corporation, Hanoi, Vietnam

Abstract—FPGA (Field Programmable Gate Array) is a plat-
form that allows carrying out many digital signal processing
designs with numerous benefits in terms of speed, energy con-
sumption and flexibility. The first part of this paper introduces
a method enhancing the contrast of an input image while
simultaneously compressing the dynamic range of that one. The
second part focuses on converting that algorithm into a digital
design to run successfully on Xilinx FPGA. We also estimate the
outcome on Zybo Z7 board of Digilent and achieve an impressive
result with 120 fps for input/output images of resolution 640x512.
In addition, fixed-point numbers operations offer a high precision
in comparison with floating-point numbers in MATLAB, which
brings high reliability in deployment.

Index Terms—FPGA, digital design, embedded system, edge-
preserving filter, histogram projection, detail enhancement.

I. INTRODUCTION

Digital Signal Processing (DSP) techniques have been ap-
plied in a range of different areas such as wireless communica-
tion, speech/image processing [1]. The important issues when
building actual DSP systems that might be used in practice
are related to the real-time ability and low-power demand [2].
Nowadays, there are a lot of development platforms which
may meet those criteria. For instance, we can use GPUs for
executing thousands of multiplications at the same time to
speed-up computationally intensive tasks instead of CPUs.
Besides, several firms provide DSP Integrated Circuits (ICs)
accompanied by their own software development environments
for compiling source code from some high level programming
language or assembly to run on those chips. These DSP ICs
are built to accelerate computational operations containing
many additions and multiplications. Not only that, another pro-
grammable IC category which might be applicable in reality
is FPGA. One of the advantages of FPGA compared to other
IC categories is flexibility. We can use FPGA to implement
DSP applications with our own interface standards without
any constraint. Moreover, the stability is also a considerable
perspective because with FPGA, we can estimate and modify
our design to satisfy requirements including latency, pipelined
stages, resources usage, etc.

A number of previous research have mentioned typical and
popular tools for image enhancement, both in spatial and
frequency domain, such as histogram equalization in [3], [4]
and [5], histogram stretching in [6], wavelet transform in [7].
Tarek M. Bittibssi et.al [8] have been compared preceding
papers and introduced the implementation of several traditional

Fig. 1: The steps of detail enhancement algorithm

mechanisms on FPGA: median filtering, negative transforma-
tion, contrast stretching, etc. Most of these techniques produce
output images which have the same gray levels as original
images (e.g. 256 gray levels corresponding to 8-bit pixels).
However, modern infrared cameras are able to snap a photo
or record a video with a grayscale up to 14-bits associated
with 16384 distinct gray levels, which makes enhancing the
quality of images much more efficient. For example, if 14-bit
images have low contrast meaning that it is too dark or too
bright, we can take advantage of some processing mechanism
to receive 8-bit output images but have better quality. Another
reason to consider shrinking the dynamic range is that 8-bit
images are good enough for human vision and 14-bit grayscale
cameras have been become available today, particularly in
military industries, since infrared image processing is crucial.

In this paper, we present a method for enhancing an input
image by performing guided filters and histogram projection
based on the method introduced in [9]. The input image
containing 14-bit pixels is processed to produce the resulting
image with 8-bit pixels but details are improved remarkably.
The main purpose of this paper is to address the matter of
transforming this algorithm from source code on MATLAB
into a digital design which may operate correctly on FPGA
with a minimum amount of resources.

II. DETAIL ENHANCEMENT ALGORITHM

The algorithm is divided into three steps. The purpose of
the algorithm is to convert 14-bit infrared images with low
contrast, poor detail, to 8-bit images but the details are clearer,
higher contrast. The data processing steps are described as
shown in Fig. 1.

Guided filter (GF) is proposed by Kaiming He in 2010
[10] and can be used to smooth images but preserving edges.



Fig. 2: The order of guided filtering procedure (The arrows
in the figure indicate the relationship between interdependent
quantities)

The sequence of this filter may be summarized as Fig. 2.
To compute the mean value of an input image, we apply a
kernel which has the size of 3× 3 and this is the same as the
two other steps of calculating meana and meanb values. The
correlation is also figured out by this filter except all pixels are
squared from the original image. These are formulas needed
to compute the output image Q accompanied by convolution
operators:

a = varI./(varI + ε) (1)
b = meanI − a. ∗meanI (2)
Q = meana. ∗ I +meanb. (3)

We apply two guided filters corresponding to different
parameters ε1 and ε2. The first guided filter with a small value
ε1 to reduce noise from the input image but still preserving
small details and the output is denoted as IB1 in Fig. 1. The
second one with the bigger value ε2 will only maintain strong
edges, which used to produce the base layer IB . By subtracting
IB from IB1, we obtain the detail layer ID. The effects of
ε2 = 100, ε2 = 500 and ε2 = 1000 on ID when ε1 is fixed are
demonstrated in Fig. 3. Besides, we consider the differences
of several typical kernel sizes such as 3× 3, 5× 5 and 7× 7.
Fig. 4 shows the capability of detail extraction between those
window sizes. In our implementation, we choose the kernel
size 3×3 because a small kernel size with a large parameter ε2
will create a satisfied detail layer ID. Moreover, this will save
a significant amount of resources on FPGA in deployment.

After that, we forward the output IB through a module
performing compressing from 16384 to 256 gray levels. This
operation is described as Fig. 5. Specifically, we obtain a his-

Fig. 3: Input image and ID with ε2 = 100, ε2 = 500 and
ε2 = 1000 with ε1 = 50. Small ε2 values retain more details
and noise than the big ones.

togram from the 14-bit input image which has passed through
the guided filter and then choose an appropriate threshold to
decide whether the value at each bin of that histogram is zero
or one. The next step is to compute cumulative summation
for each gray level after thresholding and all values of this
cumulative summation series are normalized by a factor which
equals to the number of bins assigned value 1 in the earlier
step so that coefficients after this procedure are between 0 and
1. The pseudo-code of this algorithm may be summarized as:

Algorithm 1 Histogram Projection

1: Step 1: Hist = histogram (input image)
2: Step 2: HE = Hist ≥ Thresh
3: Step 3: HE = cumsum(HE)

sum(HE) ; range = sum(HE)
4: Step 4:
5: if range ≥ 255 then
6: Y = 255×HE
7: else
8: Y = 255−range

2 + range×HE
9: end if

10: We can see that Y is an array or a vector consist of 16384
values. In order to acquire the output image, replace pixels
from the input image by the value at corrresponding index
of Y

11: Step 5:
12: For i=1 to length(Hist) do
13: Image Out(ImageOut == (i− 1)) = Y (i)
14: End

From the formula (1), we can see that a is large when varI
is much bigger than ε and this will happen at edges of objects
in the input image. We use meana values from two filtering



Fig. 4: Input image and ID with different kernel sizes of
guided filter (3× 3, 5× 5 and 7× 7).

processes and denote them as α, β in Fig. 1. We use these
coefficients in computing IDP , in which γ is a configurable
parameter. The result of α × β is called a gain mask. We
demonstrate different gain masks corresponding to ε2 = 100,
ε2 = 500 and ε2 = 1000 when ε1 = 50 in Fig. 6. Next,
we combine IBP and IDP by an addition operator. After
adding them together, we have an image with pixel values
which might be greater than 255. Again, we apply histogram
projection one more time to compress the output image into
range 0, . . . , 255 and then receive the final result which is
an 8-bit output image with a better quality compared to the
original image.

III. PROPOSED THREE-STEP ALGORITHM
IMPLEMENTATION ON FPGA

Over the last section, we understand that two main tasks
of the detail enhancement algorithm are guided filters and
histogram projection. Firstly, we start studying about how to
perform a filter on FPGA. There are a number of different
methods, however, we have selected the one which is nearly
similar to the principle presented in [11]. Fig. 7 and Fig. 8
is the outline of our design. As you can see, to perform
convolution with a kernel of size 3× 3, we need a line buffer
(Fig. 7) to store input pixels. Every clock cycle, a new pixel
enters this line buffer and each pixel which has been put into
previously is shifted to the right one step or moved down the
next line. We pull out a window of 3 × 3 pixels from these
lines to calculate the mean value of them as indicated in Fig.8,
where adders and multipliers have one clock cycle latency. It
is obvious that we may duplicate this kind of architecture for
other filters in our design. In fact, as described in section II,
we have four separate mean filters which used to compute
the mean and correlation values of an input image, as well
as meana and meanb in the next step. By taking advantage

Fig. 5: The steps of histogram projection.

Fig. 6: Different gain masks with different parameters ε2 =
100, ε2 = 500 and ε2 = 1000. The bright region means that
gain mask value is big.

of a well-designed filter, we may avoid time-consuming in
debugging and concentrate on optimizing fixed-point numbers
in order to acquire an acceptable precision but with the modest
amount of resources. To avoid wasting logic resources on
FPGA, we only build one block for computing value varI of
both guided filters, and then design two separate calculation
blocks for a and b values with different parameters ε. In fact,
ε1, ε2 and γ are configurable parameters and may be modified
by users, who integrate our IP core into their overall system,
so we do not make those values fixed in our design.

Secondly, we build a module for histogram projection.



Fig. 7: Line buffer for convolution with kernel 3× 3.

Fig. 8: Pipelined additions and multiplication.

The histogram of an input image may be determined and
saved to a Block RAM while input pixels are coming in,
as the random access characteristic of RAM is suitable for
this work. Nevertheless, we also need to pay attention that
it takes three clock cycles to calculate for each input pixel
including three operations: read the current value from RAM,
increase by one and write the added value back. On one
side, there are a number of circumstances in this process
that new coming pixels are equal to the previous ones which
are in progress of adding or writing their new values to the
memory, thus we need to check and handle those situations.
We summarized our solution in Fig. 9, which will give us the
corresponding waveform in Fig. 10. On the other side, Fig. 11.
illustrates necessary memory blocks to store information while
implementing this algorithm. The reason why we use two

Fig. 9: The diagram of histogram calculation block.

Fig. 10: Waveform created from the diagram in Fig. 9. This
figure shows that our design can resolve situations that many
pixels which have the same value appear in continuous clock
cycles.

distinct Block RAMs is that cumulative summation is a time-
consuming activity because with 16384 bins of the histogram,
we have to spend approximately that number of clock cycles to
read values from the memory, compare those with a threshold
value then calculate and write results of them to another Block
RAM, which stores only cumulative summation series. In this
period, we also have to clear each memory cell of BRAM
containing the histogram to zero right after handling of that
cell is completed. Therefore, we utilize two Block RAMs
alternating each other to avoid conflict in case new pixels
appear during those steps. As a result, we can deploy our
detail enhancement algorithm on FPGA without any delay.

Up until this point, we have explained almost all of major
architectures in our design. Another outstanding idea which we
applied is that we use the histogram of the previous frame to
compute the output of the current frame. As described above,
assuming that we wait for cumulative summation finished,
we need to buffer the current frame and stop receiving new
coming pixels. Because of the large latency of this operation,
we use the histogram of the last frame to execute histogram
projection for the ongoing one. We have come up with this



Fig. 11: The diagram of histogram selection.

Fig. 12: Continuous frames at the second histogram projection
step.

idea and investigated effects that might happen before finally
agreed this approach. Provided that our system is running
at speed 60 or even up to 120 fps, the difference of the
histograms between continuous frames is trivial, as you can
see an example in Fig.12-14. As a result, every operation in our
design is pipelined and the processing speed depends on the
speed of input pixels, as well as the maximum clock frequency
that our IP core may achieve without any timing error.

IV. RESULTS

We have implemented this detail enhancement algorithm
and packaged into an IP Core compatible with AXI video
streaming interface standard. We experimented our design on
Zybo Z7 board of Digilent and in Vivado 2018.3 environment.
According to acquired reports after running synthesis and
implementation steps, the statistics about different kinds of
resources that our IP Core occupies are listed in Table.1. Our
design can achieve the maximum clock frequency up to 125
MHz, which may process one frame of size 640 × 512 in
approximately 2.62 millisecond, provided that input pixels are
pushed into continuously every clock cycle. Due to the fully-
pipelined architecture, while performing calculation on the
current frame, our IP core may receive and process the next

Fig. 13: The histograms of continuous frames corresponding
to Fig. 12.

Fig. 14: The cumulative summation series of continuous
frames corresponding to Fig. 12.

frame when it comes, so we do not need to wait for the current
one finished completely. Therefore, our design may operate in
systems that require a high frame rate.

In terms of visual representation, our algorithm significantly
improves image quality and can well support observations as
shown in Fig. 15.

We also consider the effect of guided filters on the output
image. In the Fig. 16, we compare the output in two cases, ei-
ther only histogram projection or complete detail enhancement
algorithm from the input image.

V. CONCLUSION

In conclusion, detail enhancement algorithm presented in
this paper not only improves the contrast of infrared im-
ages significantly but also achieves real-time capability when
deployed on FPGAs. Using histogram information of the



TABLE I: Statistics of resources for detail enhancement IP core

Stage
Slice LUTs (53200) Block RAM (140) DSPs (220) Slice Registers (106400)

No % No % No % No %

Post synchronization 12782 24.03 31 22.14 48 21.82 18818 17.69

Post implementation 10079 18.95 31 22.14 48 21.82 16533 15.54

Fig. 15: The input and output of detail enhancement algorithm.
(left: original 14-bit images, right: output 8-bit images).

Fig. 16: Only histogram projection (left) and full detail en-
hancement (right).Detail enhancement with guided filters give
us the better quality image.

previous frame to compute the output for the current frame
both eliminates delay due to waiting and makes our design
fully-pipelined. Finally, the amount of logic resources needed
to integrate our IP core, as well as the maximum clock
frequency which is achievable, is absolutely feasible when
implemented in practical embedded systems.

REFERENCES

[1] V. D. Nguyen, V. L. Pham, V. X. Hoang, H. D. Han, H. T. Nguyen
and T. H. Nguyen, ”Implementation of an OFDM system based on the
TMS320C6416 DSP,” International Conference on Advanced Technolo-
gies for Communications, Hai Phong, pp. 74-77, 2009.

[2] T. H. Nguyen, T. H. Nguyen, T. Yoon, W. Jung, D. Yoo and S. Ro,
”An ICI Suppression Analysis Testbed for Harbor Unmanned Ground
Vehicle Deployment,” in IEEE Access, vol. 7, pp. 107757-107768, 2019.

[3] Abduallah M. Alsuwailem, and Saleh Alshebeili , “A new approach
for Real Time Histogram Equalization using FPGA,” Proceedings of
International Symposium on Intelligent Signal Processing and Commu-
nication Systems, 2005.

[4] Sachdeva, Nitin, and Tarun Sachdeva, “An FPGA based Real-time
Histogram Equalization Circuit for Image Enhancement,” IJECT vol.
1, no. 1, December 2010, pp. 63-67.

[5] Sundaram Sowmya, and Roy P. Paily, “FPGA implementation of image
enhancement algorithms,” 2011 International Conference on Communi-
cations and Signal Processing.

[6] Priyanka Saini, Adesh Kumar, and Neha Singh, “FPGA Implementation
of 2D and 3D Image Enhancement Chip in HDL Environment,” IJCA
vol. 62, no. 21, January 2013.

[7] Sangjin Kim, Wonseok Kang, Eunsung Lee, and Joonki Paik, “Wavelet-
Domain Color Image Enhancement Using Filtered Directional Bases
and Frequence-Adaptive Shrinkage,” IEEE Transactions on Consumer
Electronics, 1063-1070, June 2010.

[8] Tarek M. Bittibssi, Gouda I. Salama, Yehia Z. Mehaseb, and Adel E.
Henawy, “Image Enhancement Algorithms using FPGA,” International
Journal of Computer Science and Communication Networks, Vol 2(4),
536-542.

[9] Ning Liu, and Dongxue Zhao, “Detail enhancement for high-dynamic-
range infrared images based on guided image filter,” Infrared Physics
& Technology, Volume 77, July 2016, Elsevier.

[10] Kaiming He, Jian Sun, and Xiaoou Tang, “Guided Image Filtering,”
IEEE Transactions on Pattern analysis and Machine intelligence, vol.
35, 2013.

[11] Abdullah Al-Dujaili, and Suhaib A. Fahmy, “High Throughput 2D
Spatial Image Filters on FPGAs,” arXiv 2017, arXiv:1710.05154.


