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Abstract—Searchable encryption (SE) enables privacy-
preserving keyword search on encrypted data. Public-key
SE (PKSE) supports multi-user searches but suffers from
high search latency due to expensive public-key operations.
Symmetric SE (SSE) offers a sublinear search but is mainly
limited to single-user settings. Recently, hybrid SE (HSE) has
combined SSE and PKSE to achieve the best of both worlds,
including multi-writer encrypted search functionalities, forward
privacy, and sublinear search with respect to database size.
Despite its advantages, HSE inherits critical security limitations,
such as susceptibility to dictionary attacks, and still incurs
significant overhead for search access control verification,
requiring costly public-key operation invocations (i.e., pairing)
across all authorized keywords. Additionally, its search access
control component must be rebuilt periodically for forward
privacy, imposing substantial writer overhead.

In this paper, we propose Hermes, a new HSE scheme
that addresses the aforementioned security issues in prior
HSE designs while maintaining minimal search complexity
and user efficiency at the same time. Hermes enables multi-
writer encrypted search functionalities and offers forward
privacy along with resilience to dictionary attacks. To achieve
this, we develop a new identity-based encryption scheme with
hidden identity and key-aggregate properties, which could
be of independent interest. We also design novel partitioning
and epoch encoding techniques in Hermes to minimize search
complexity and offer low user overhead in maintaining forward
privacy. We conducted intensive experiments to assess and
compare the performance of Hermes and its counterpart
on commodity hardware. Experimental results showed that
Hermes performs search one to two orders of magnitude faster
than the state-of-the-art HSE while offering stronger security
guarantees to prevent dictionary and injection attacks.

1. Introduction

Data outsourcing services (e.g., Dropbox, Google Drive,
OneDrive) have been increasingly prevalent because of their
accessibility and convenience. However, user data might be
exfiltrated when outsourced to the cloud, which leads to
privacy concerns regarding information leakages, especially
for sensitive data (e.g., personal and medical records). An
adversarial cloud can exploit user data illegitimately, jeopar-
dizing user privacy and the reputation and business of the

victim organizations. Although end-to-end encrypted storage
systems [9], [10] can mitigate user privacy concerns via data
encryption, these systems thwart the capabilities of executing
queries (e.g., search) that can be performed on plaintext data.

To enable queries on encrypted data, the concept of
Searchable Encryption (SE) [63] has been proposed. The
most secure SE paradigm is Dynamic Symmetric SE (DSSE),
which constructs an encrypted index that allows a client
to perform search (via a keyword trapdoor) or update on
their encrypted data without leaking any information about
the keywords or data being searched or updated [28], [48],
[30], [23]. Many advancements have been made to make
DSSE more secure with numerous security properties being
achieved such as forward-privacy [17], [56], backward-
privacy [37], [56], volume-hiding [46], [69], [14], and search
and access pattern obfuscations [42], [41], [61].

Despite its security advantages, DSSE only supports
personal search/update functionalities, in which the encrypted
data can only be searched/updated by its owner. This strictly
limits the practicality and deployability of DSSE in practice,
where data is commonly shared and accessed by multiple
users. Some attempted to make SSE support multi-user
query functionalities; however, most of them require a costly
multiparty computation model or a trusted third party to
enforce search access controls [29], [51], [71], [52], [50].

To enable multi-user (particularly multi-writer) function-
alities without relying on external parties, Wang et al. recently
proposed Hybrid SE (HSE) [70], which develops an efficient
search access control component atop DSSE using keyword
sharing mechanisms in the Public-Key SE (PKSE) model
[16]. HSE achieves the best of both SE models, including
the sublinear search complexity of DSSE plus the confined
search (i.e., the search token size is independent of the
number of users) and multi-writer functionalities of PKSE.

Despite its significant potential, integrating PKSE to
enable multi-user functionalities in DSSE remains significant
security and performance challenges. PKSE is known to be
vulnerable to keyword-guessing (dictionary) attacks (KGA)
[19] and incurs a high search overhead, requiring to process
the entire search access control list [16], [76], [15], [70].
Furthermore, while forward privacy has become a de facto
standard in DSSE, this feature is not supported by PKSE,
leaving the search access control component susceptible to
devastating attacks (e.g., file-injection [77]). Previous efforts
to (partially) address this vulnerability require the writers to

2865

2025 IEEE Symposium on Security and Privacy (SP)

© 2025, Tung Le. Under license to IEEE.
DOI 10.1109/SP61157.2025.00184



periodically rebuild their search access control component
[70], leading to high user overhead.

Given the critical security and performance challenges
in enabling multi-user functionalities in DSSE, we raise the
following research question:

Can we make DSSE support multi-writer functionalities
with high security (e.g., KGA resiliency, forward privacy) as
well as concretely low search complexity and user efficiency?

1.1. Our Contributions

We answer the above question affirmatively with
Hermes1, a new HSE scheme that offers multi-writer en-
crypted search functionalities and achieves high security and
efficiency (asymptotically and concretely) simultaneously.
• Resiliency to KGA with Minimal Leakage: Unlike prior

HSE [70] and sole PKSE designs, Hermes offers security
against KGAs. Hermes can also restrict the search scope
to a specified writer subset to prevent unnecessary leakage.

• Low Reader Bandwidth Overhead: In Hermes, the
reader’s search query size is independent of the number
of writers, where a single search token encompasses the
power to search over any number of writers’ databases.
Therefore, its reader bandwidth overhead is much smaller
than other multi-writer encrypted designs (e.g., [29], [50]),
whose query size grows linearly in the number of writers.
Hermes is desirable for applications involving many writers
with disjoint databases (e.g., email [1], messaging [2],
scientific collaboration [3], [5]). For these, making query
size independent of the number of writers is critical.

• Sublinear Server Search Complexity: Hermes achieves
sublinear search computation complexity on the server,
where it only takes O(

√
|W |) time to perform an au-

thorized search, where |W | is the number of keywords.
This is much more efficient than state-of-the-art multi-
writer encrypted search techniques, which require linear
processing in the DSSE index of size O(W ·N) [29], [50]
(where N is the number of documents) and/or the search
access control component [70] of size O(|W |). We also
introduce a novel recursive partitioning technique to further
reduce the search complexity to O(log2 |W |/ log log |W |),
at the cost of slightly increasing the search token size from
O(λ2) to O(λ log |W |/ log log |W |+ λ2).

• Streamlined Forward Privacy of Search Access Control
with Low Writer Overhead. The search access control
component in Hermes achieves forward privacy directly
during keyword/file updates by the writer, eliminating the
need for extra periodic rebuilds. This results in minimal
writer overhead, adding only a multiplicative factor of the
security parameter λ, compared with the substantial cost
of fully rebuilding the entire access control component
(typically much larger than λ) in the prior HSE technique
[70] to achieve equivalent security. Hermes also eliminates
the security risks associated with choosing inappropriate
epoch intervals for periodic rebuilds and therefore, achieves
stronger security than the previous HSE scheme, which

1. Hermes stands for Highly-efficient and secure multi-writer encrypted search.

struggles to implement short rebuild epochs. For large
databases with many keywords, maintaining short rebuild
intervals (e.g., 1 second or 1 minute) may be impractical
as the rebuild might not keep up with frequent epoch
transitions. This constraint forces the use of longer epochs
(e.g., 1 hour or 1 month, as in [70], Sec. 7.1), leaving
search and update queries within these extended epochs
vulnerable to leakage-abuse and injection attacks.

• Fully-Fledged Implementation and Evaluation: We fully
implemented Hermes and evaluated its performance on a
commodity server. Under real environments, experimental
results showed that Hermes performs search up to 164×
faster than the state-of-the-art HSE [70]. Our implementa-
tion is available at https://github.com/vt-asaplab/Hermes.

• New IBE Scheme with Key-Aggregate and Hidden Iden-
tity: In this paper, we propose Hidden-Identity Coupling
Key-Aggregate Encryption (HICKAE), a new Identity-
Based Encryption (IBE) scheme that inherits all desirable
properties of an IBE for efficient search access control in
multi-writer encrypted search [70] plus the additional ca-
pability to conceal the identity embedded in the decryption
keys. Specifically, HICKAE allows constant-size search
query with confined search property, allowing the reader
to search on any selected subset of writers’ database with
a single search token. The search scope restriction to a
specific subset reduces unnecessary leakage, which was
not supported in most prior multi-writer encrypted search
[16], [75], [76], where a token could access any writer’s
database. In scenarios where a corrupt server could act
as a writer to inject documents and compromise query
confidentiality, confined search complicates such attacks,
as readers are more likely to search within their trusted
writers’ subset rather than across unfamiliar sources. More
importantly, HICKAE allows the search token to preserve
identity privacy, thereby preventing KGAs.

Table 1 compares Hermes with prior multi-writer en-
crypted search schemes. To our knowledge, Hermes is the
first to simultaneously achieve forward privacy for search
access control, low server search complexity, high user
efficiency, and resistance to KGAs. Apart from secure
communication applications, Hermes can also be useful
in EHR management, where multiple physicians (writers)
upload patient’s EHRs, and the patient (reader) retrieves
and searches their medical history. In all these applications,
keyword-guessing and injection attacks pose major threats,
allowing adversaries to compromise user and data privacy
by exploiting leakages in search access control components.
Hermes eliminates these risks while also providing sublinear
search efficiency and rebuild-free forward privacy, ensuring
system scalability, low-latency performance, and strong
security for all users involved in real-world deployment.

1.2. Technical Highlights

Brief Overview of HSE [70]. HSE consists of two main
components: (i) a DSSE-based encrypted index containing
encrypted keyword-file pairs, and (ii) a PKSE-based search
access control component containing encrypted sharing
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Table 1: Comparison of Hermes with prior multi-writer encrypted search systems.

Scheme Search Complexity Update Complexity¶ Forward No KGA
Reader Server Reader Comm. (In + Out) Writer Server Comm. Privacy Rebuild Resiliency

PEKS [16] O(1) O(|DB|†) O(rw + λ) O(|Wu|) O(1) Oλ(|Wu|) ✗ _ ✗
NTRU-PEKS [15] O(1) O(|DB|) O(rw + λ) O(|Wu|) O(1) Oλ(|Wu|) ✗ _ ✗

PAUKS [52] O(1) O(|W |† + dw
†) O(rw + λ) O(|Wu|) O(1) Oλ(|Wu|) ✗ _ ✓

AESM2 [71] O(1) O(|W |† + dw) O(rw + λ) O(|Wu|) O(1) Oλ(|Wu|) ✗ _ ✓

FP-HSE [70] O(1) O(|W |† + dw) O(rw + λ) O(|W |†) O(1) Oλ(|W |) ✓ ✗ ✗

Our Hermes O(λ) O(λ
√
|W |† + dw) O(rw + λ2) O(|Wu|†) O(1) Oλ2(|Wu|) ✓ ✓ ✓

Our Hermes+ O( log |W |
log log |W | + λ) O( log2 |W |

log log |W |
† + dw) O(rw + ( λ log |W |

log log |W | + λ2)) Oλ(|Wu|†) O(1) Oλ2(|Wu|) ✓ ✓ ✓

DB: The whole keyword-file pairs database; W : The set of unique keywords over all documents (keyword universe); Wu: The set of updated (added) keywords.
λ: Security parameter; rw: Number of documents matched keyword search; dw: Number of updates of keyword w; †: Public-key pairing operation.
¶: FP-HSE requires a rebuild operation in update to maintain forward privacy. See §6 for detailed experiments.
For simplicity, we use Oλ(·) (similarly for Oλ2(·)) to hide a multiplicative factor of the security parameter in the update complexity.

tokens. The keyword-file pairs are encrypted by symmetric
encryption and can be decrypted using a valid keyword
trapdoor, as in standard DSSE. Meanwhile, each sharing
token is created using an IBE called Identity-Coupling Key-
Aggregate Encryption (ICKAE), where the DSSE keyword
trapdoor is encrypted using the reader’s public key, and the
authorized keyword serves as the identity. To achieve the
key-aggregate property for confined search, ICKAE relies on
a Structured Reference String (SRS), where the writer uses
its deterministically assigned element in the SRS to create
sharing tokens. When the reader searches selected writers’
databases, they generate an aggregated decryption key using
the searched keyword as the identity and the assigned SRS
element of the selected writers. The server then uses this
aggregated key to attempt decryption of all sharing tokens
from the selected writers, retrieving the keyword trapdoor,
which is subsequently used to decrypt the DSSE-encrypted
index and obtain the search results.

There are three main limitations in the current HSE
design as follows.
• Keyword-Guessing Vulnerability: HSE uses ICKAE to
enforce search access control. Although ICKAE protects
identity (i.e., keyword) confidentiality in the ciphertext (i.e.,
anonymity), it unfortunately does not protect the identity
confidentiality associated with the aggregated decryption key
due to its public-key encryption structure. Since the identity
space is finite and can be known by the adversary (e.g.,
dictionary), the adversary can create ciphertext under its
chosen identity using the public key of the reader, then try
matching it with the given aggregated key (see §2.2 for more
details on how this attack works).
• Costly Periodic Rebuild for Forward Privacy: HSE en-
ables forward privacy for the search access control component
by concatenating the keyword with a single epoch value
as the identity in IBE when creating sharing tokens. As a
result, whenever a new epoch starts, the writers need to
update/rebuild their existing sharing tokens to make them
consistent with the current epoch so that the reader query can
search on their database. This rebuild complexity is linear in
the number of sharing tokens, which incurs O(|W |) number
of public-key operations and O(|W |) communication cost,
where |W | is the number of authorized keywords.
• Linear Server Search Complexity: In HSE, the server
needs to test the reader’s search token (i.e., the aggregated
decryption key) against all the writer’s sharing tokens to

obtain the DSSE trapdoor, leading to O(|W |) computational
complexity. This cost is extremely high because each test
incurs two expensive public-key pairing operations.

Can we address all these challenges?
Idea 1: KGA-Resilience via Hidden-Identity IBE. KGA
stems from the leakage of the identity in the aggregated
decryption key of the underlying IBE used for search access
control. Therefore, to address this, we design HICKAE,
which offers the same properties as ICKAE (e.g., key-
aggregate, anonymity) but can prevent the chosen-identity
attack that could exploit the decryption key. The core idea
is to have the encryptor embed a secret into the ciphertexts
and only the decryptor who knows the private key and
the encryptor secret can generate the aggregated key. The
challenge is to ensure only a single key is needed to decrypt
all ciphertexts (associated with the same identity but different
secrets) created by different encryptors. We tackle this by
securely establishing correlation values between any two
encryptors (see §4.2 for details). When HICKAE is used for
search access control, its ability to conceal the identity in
the decryption key enhances Hermes’s resilience to KGAs.
Idea 2: Forward Privacy without Rebuild via Epoch
Encoding. To avoid costly rebuilds for forward privacy, we
propose a new technique to encode the epoch information
in a way that it can restrict the capability of the reader’s
search query, allowing queries issued at the current epoch
to only search over encrypted sharing tokens created at or
before that epoch. When the writers perform updates at a
new epoch e′, they generate new encrypted sharing tokens
using the encoded string of e′. Existing search queries issued
at epochs < e′ become invalid for accessing sharing tokens
created at epochs ≥ e′, thus achieving forward privacy. Since
search queries in Hermes are built from aggregated keys in
HICKAE, we encode epochs as part of the identity, such that
aggregated keys used for decrypting current ciphertexts do
not compromise the privacy of future ones, while remaining
valid for all created at or before the current epoch. This
strategy offers a reasonable trade-off, offering fast search
and forward privacy for the search access control component
without requiring rebuilds, and only slightly increasing server
communication and storage by a factor of O(λ).
Idea 3: Sublinear Search Complexity via Recursive
Partitioning. To reduce server complexity, we securely
cluster the search access control component into partitions.
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During a search, the partition address corresponding to
the queried keyword is revealed, allowing to test only the
encrypted sharing tokens within that partition with the search
queries to identify a match. In particular, the authorized
keyword sharing tokens are distributed uniformly to

√
|W |

partitions each containing O(
√
|W |) tokens. To search for

a keyword, the server only needs to perform cryptographic
tests within the specified partition, rather than over the entire
search access control component. Each partition address is
computed using a keyed pseudorandom function (PRF) only
known by the writer. Thus, even if the adversary learns
the partition address, they gain no information about the
queried keyword, and therefore, the query confidentiality is
preserved. To let the server know which partition the searched
keyword belongs to, the reader sends a complementary
search token that allows the server to identify the correct
partition (via cryptographic testing) before matching the
keyword query with the sharing tokens. Although this strategy
incurs an additional computation cost O(

√
|W |) for partition

identification, it still maintains a constant search query of
size O(λ2). It is worth noting that simple partitioning can
lead to KGA vulnerabilities due to the correlation between
partition indices and keywords. To address this, we integrate
this partitioning strategy with our proposed HICKAE scheme
to achieve sublinear search complexity while simultaneously
preserving KGA resilience. To our knowledge, no prior work
has achieved sublinear search with KGA resilience through
partitioning. Finally, we show that this partitioning strategy
can be applied recursively to further reduce the computational
search complexity to O(log2 |W |/ log log |W |) with search
query of size O(λ log |W |/ log log |W |+ λ2) as a trade-off.

2. Preliminaries

Notation. We denote by λ the security parameter and by Zq

a group of integers modulo q. We denote [n] as {1, . . . , n}
and [x, y] as {x, x+1, . . . , y}. x $← [n] means x is selected
uniformly at random from [n]. Bold small letters (e.g., t)
denote vectors, where |t| denotes the dimension of t. Let
(G1, G2, Gt) be a tuple of cyclic groups of prime order q
and equipped with pairing e: G1×G2 → Gt. Let p = q− 1.
We denote [1]1 ∈ G1 and [1]2 ∈ G2 as generators in their
groups, respectively. We define [1]t ← e([1]1, [1]2) as a
generator of Gt. For i ∈ {1, 2, t} and x ∈ Zq, [x]i ∈ Gi

denotes the group element whose discrete logarithm base [1]i
is x. The operation between two group elements [x]i ∈ Gi

and [y]i ∈ Gi is written as addition, i.e., [x]i + [y]i ←
[x + y]i ∈ Gi. The pairing is expressed as multiplication,
i.e., [x]1[y]2 ← e([x]1, [y]2) = [xy]t ∈ Gt.

2.1. Searchable Encryption

Searchable Encryption permits a user to perform privacy-
preserving keyword searches over encrypted documents
without leaking the plaintext of the keyword and documents
to the storage server. We recall DSSE, which enables not
only keyword search but also document update.

n Number of classes/writers
[n] {1, . . . , n}
[x]i Group element in Gi: [x]i = x[1]i with i ∈ {1, 2, t}

G(.), H(.) Cryptographic hash functions
PTkn/WTkn Encrypted partition/keyword tokens set

EIDX Encrypted search index (DSSE)
ESTkn Search access control ESTkn = (PTkn,WTkn)
σ̂/σ′

i The reader trapdoor/the writer i’s secret, i ∈ [n]
σi The writer i’s shared secret σi = σ̂i + σ′

i, i ∈ [n]
Σ Set of shared secrets Σ = {σi}i∈[n]

Corr Correlation set Corr = {[∆i,j ]1}i,j∈[n]∧i ̸=j

(rpk, rsk) The reader’s public and private key pair
κi The writer i’s DSSE secret key

[eki]2 The writer i’s class-binding key
wski The writer i’s secret key wski = (κi, [eki]2)

S A writer subset S ⊆ [n]
e Epoch number

e(t) The bijection mapping tag t to epoch e
t(e) The inverse function mapping epoch e to tag t
Γt The smallest set of tags including a prefix of all t′ ⪰ t
Pe Set of prefixes of encoded epoch t(e)
W Active keyword set
s/u Search token/update token

Table 2: Summary of notation

Definition 1 (DSSE). A DSSE scheme is a tuple of PPT
algorithms defined as follows:
• (κ,EIDX)← Setup(1λ): Given a security parameter λ, it

outputs a secret key κ, and an encrypted index EIDX.
• s← SrchTkn(κ,w): Given a secret key κ, and a keyword
w, it outputs a keyword trapdoor s.

• R ← Srch(s,EIDX): Given a trapdoor s and a DSSE
encrypted index EIDX, it outputs a result R.

• u← UpdtTkn(κ, op, w, f): Given a secret key κ, an op-
eration op ∈ {add, del} and a keyword-file pair (w, f) to
be added/deleted, it outputs an update token u.

• EIDX′ ← Updt(u,EIDX): Given an update token u and an
encrypted index EIDX, it outputs an updated index EIDX′.

2.2. ID-Coupling KAE

KAE [26] is a Public-Key Encryption (PKE) that permits
the decryption of multiple ciphertexts created by different
encryptors (called classes) using an aggregated key. To enable
efficient multi-writer encrypted search, Wang et al. [70]
proposed ID-Coupling KAE (ICKAE) that upgrades KAE
from PKE to IBE by embedding a unique identity (e.g., a
keyword) into the ciphertext and decryption key, such that
the decryption key for a class subset and a specific identity
can only decrypt the ciphertexts created by the classes in
the subset and the same identity.

Let sk = (γ, δ) be the private key with the corresponding
public key pk = ([δ]2, [γ]2). Let ([αi]1, [α

i]2, [α
n+1]t), with

i ∈ [2n] \ {n + 1}, be the SRS public parameters.
To encrypt a message m with the corresponding
identity id, class i computes c ← ([c1]2, [c2]2, c3),
where [c1]2 ← [r]2, [c2]2 ← r([γ]2 + [αi]2), and
c3 ← m ⊕ G(r([αn+1]t − r[h]1[δ]2)), with [h]1 ← H(id).
Here, H : {0, 1}∗ → G1 and G : Gt → {0, 1}λ
are two cryptographic hash functions, and r ∈ Zq is
random. A single key [k]1 = γ

∑
j∈S [α

n+1−j ]1 + δ[h]1
can allow decrypting multiple ciphertexts with the
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corresponding id, created by multiple classes S ⊆ [n], as
m = c3 ⊕ G([u]t), where [u]t =

∑
j∈S [α

n+1−j ]1[c2]2 −(
[k]1 +

∑
j∈S\{i}[α

n+1+i−j ]1

)
[c1]2 = r[αn+1]t −

r[h]1[δ]2
KGA Vulnerability. In ICKAE, the decryption key leaks the
embedded identity id, leading to KGA when used for multi-
writer encrypted search. Specifically, the keyword w and its
DSSE trapdoor τw are treated as the identity (i.e., w = id)
and the message (i.e., τw = m) in ICKAE, respectively. With
the key [k]1 = γ

∑
j∈S [α

n+1−j ]1 + δ[h]1 and the public
parameters {[αn+1−j ]1}j∈S , the adversary can compute
[k′]t = [k]1[1]2− [γ]2

∑
j∈S [αn+1−j ]1 = [h]1[δ]2 and guess

which keyword is being associated with the decryption key
by checking if [k′]t

?
= [h′]1[δ]2, where [h′]1 ← H(w′) for

each chosen keyword w′.
Table 2 summarizes the symbols and notation in our schemes.

3. Models

3.1. System Model

Our system includes three entities: a reader, n writers, and
a server. Each writer i ∈ [n] owns an independent document
collection and shares it with the reader. Each writer cannot
update, delete, or modify the data of other writers. The
reader can perform privacy-preserving keyword search over
document collections of a writer subset S ⊆ [n]. We consider
the reader and writers as independent parties and they do
not have to communicate with each other during search and
update operations. Our system is a Multi-writer Searchable
Encryption (MSE) scheme with KGA-resiliency as follows.

Definition 2 (MSE). An MSE scheme with KGA-resiliency
is a tuple of PPT algorithms defined as follows:
• (rpk, rsk, σ̂, pp)← RSetup(1λ, n): Executed by the reader

given a security parameter λ, a number of writers n, it
outputs a public and private key pair (rpk, rsk), a reader
trapdoor σ̂, and public parameters pp.

• (wski, σ
′
i,EIDXi,ESTkni)←WSetup(1λ, i, pp):

Executed by a writer given its identifier i, a security
parameter λ, and the public parameters pp, it outputs a
writer secret key wski, a secret σ′

i, an encrypted index
EIDXi, and a search access control ESTkni.

• (Σ,Corr)← RPrep(rsk, σ̂, σ′): Executed by the reader
given its private key rsk and trapdoor σ̂, and the writer
secrets σ′ = {σ′

i}i∈[n], it outputs a set of shared secrets
Σ and a set of writer correlations Corr.

• s← SrchTkn(rsk, S,Σ, w): Executed by the reader given
a private key rsk, a writer subset S ⊆ [n], a shared secret
set Σ, and a keyword w, it outputs a search token s.

• R ← Srch(s, S,EIDX,ESTkn,Corr): Executed by the
server given a search token s, a writer subset S, the
writers’ encrypted index EIDX = {EIDXi}i∈[n] and their
search access control ESTkn = {ESTkni}i∈[n], and the
writer correlation set Corr, it outputs the search result R.

• ui ← UpdtTkn(rpk,wski, i, op, w, f): Executed by the
writer given its identifier i and secret key wski, the reader’s

INDb
MSE,A,L(1

λ):

1: n← A(1λ); (rpk, rsk, σ̂, pp)← RSetup(1λ)
2: foreach i ∈ [n]
3: (wski, σ

′
i,EIDXi,ESTkni)←WSetup(1λ, i, pp)

4: (Σ,Corr)← RPrep(rsk, σ̂, σ′), where σ′ ← {σ′
i}i∈[n]

5: EIDX← {EIDXi}i∈[n]; ESTkn← {ESTkni}i∈[n]

6: H0 ← {∅}; H1 ← {∅}; O ← {CrptOb, SrchOb,UpdtOb}
7: b′ ← AO(stA, pp, rpk,EIDX,ESTkn)
8: return b′

SrchOb({wk, Sk}k∈{0,1}):

9: if LSrch
H0

(w0, S0) = LSrch
H1

(w1, S1) then
10: ∀ k ∈ {0, 1},Hk ← Hk ∪ (Srch, wk, Sk)
11: return SrchTkn(rsk, Sb,Σ, wb)
12: else return ⊥

UpdtOb({ik, opk, wk, fk}k∈{0,1}):

13: if LUpdt
H0

(i0, op0, w0, f0) = LUpdt
H1

(i1, op1, w1, f1) then
14: ∀ k ∈ {0, 1}, Hk ← Hk ∪ (Updt, ik, opk, wk, fk)
15: return UpdtTkn(rpk,wskib , ib, opb, wb, fb)
16: else return ⊥

CrptOb(i0, i1):

17: if LCrpt
H0

(i0) = LCrpt
H1

(i1) then
18: ∀ k ∈ {0, 1}, Hk ← Hk ∪ (Crpt, ik)
19: return wskib
20: else return ⊥

Figure 1: Security Game for MSE.

public key rpk, an operation op ∈ {add, del}, and a
keyword-file pair (w, f), it outputs an update token ui.

• (EIDX′
i,ESTkn

′
i)← Updt(ui,EIDXi,ESTkni): Executed

by the server given an update token ui, an encrypted index
EIDXi and a search access control ESTkni of writer i, it
outputs the updated index EIDX′

i and the updated search
access control ESTkn′i.

Definition 3 (Correctness of MSE). For all parame-
ters λ and n, all (rpk, rsk, σ̂, pp) ← RSetup(1λ, n), all
(wski, σ′

i, EIDXi,ESTkni) ← WSetup(1λ, i, pp) with
i ∈ [n], all (Σ,Corr) ← PRep(rsk, σ̂, σ′), where σ′ =
{σ′

i}i∈[n], and all sequences of Srch, Updt operations over
{(EIDXi,ESTkni)}i∈[n] using tokens generated respectively
from SrchTkn(rsk, S,Σ, w), and UpdtTkn(rpk, wski, i, op,
w, f ), Srch returns the correct results w.r.t. the inputs
(i, op, w, f) of UpdtTkn when i ∈ S, except with negligible
probability in λ.

3.2. Threat and Security Models

We consider the standard threat model of MSE, where the
server and some of the writer(s) can be corrupt while the
reader is honest [70]. We assume the adversary is semi-
honest, in which it is curious about the queries of the reader
(i.e., keyword search) and writers (e.g., document update)
but follows the protocols faithfully. For non-trivial KGA,
we consider that the server can collude with some of the
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writer(s) as long as the reader does not search on the index
of the corrupt writers.

The adversary can issue a sequence of oracle queries of
three kinds: (i) corruption query, which returns the secret
key κi and the identity-binding key eki of a specific writer
i; (ii) search query, which returns the search token s of a
specified keyword w under a chosen writer subset S; and
(iii) update query, which returns the update token u of a
specified update tuple from a certain writer. The adversary
could issue queries depending on prior outcomes.

To define the semantic security of MSE, we present the
history notion with non-singularity that is extended from
single-user search [28] to capture historical leakage from
corrupt writers in the context of multi-user search [70].

Definition 4 (Non-Singular History). A history of MSE is
a query sequence H = {Histt}, where sequence number t
denotes the timestamp when the query happens and Histt ∈
{(Crpt, i), (Srch, w, S), (Updt, i, op, w, f)}.

A history H is non-singular if there exists at least one
history H′ ̸= H can be found in polynomial-time given LH
such that LH = LH′ .

We introduce a leakage function family LH =
{LSetup

H ,LSrch
H ,LUpdt

H ,LCrpt
H } to control exactly the informa-

tion of history H leaked during setup, search, update, and
corruption, respectively. When an oracle is queried for the
t-th operation, any function in LH is instantiated with H
being the history consisting of the first (t − 1) operations
and with the t-th operation as a function input. It records the
leakage incurred due to the last operation while taking all
historical operations into consideration. We omit H if there is
no ambiguity. Before any query (i.e., H = {∅}),L = LSetup.
Corruption Leakage. We define Ic = {i : (Crpt, i) ∈ H}
as the set of corrupt writers. To capture the corruption
leakage, for any writer i ∈ [n], we introduce a function
UpdtBy(i) based on history H, which lists all updates
by i in the history: UpdtBy(i) = {Histt : Histt =
(Updt, i, op, w, f) ∈ H}.

We state the formal security definition of MSE as follows.

Definition 5 (Adaptive Security of MSE). For all PPT
adversary A and the game INDb

MSE,A,L(1
λ) defined in

Figure 1, MSE is L-adaptively-secure if:
|Pr[IND0

MSE,A,L(1
λ) = 1]−Pr[IND1

MSE,A,L(1
λ) = 1]| ≤ negl(λ)

Apart from semantic security, another vital security
property in SE is forward privacy, which prevents the server
from inferring updated documents/keywords or executing
injection attacks [77]. While forward privacy in (single-user)
DSSE has been clearly defined and well-studied, where
a single entity (data owner) performs both search and
update [18], achieving forward privacy in multi-user SE is
more challenging. This is because searches and updates are
performed by separate entities (reader and writer, resp.) that
do not communicate during the operations. In this context,
forward privacy can only be defined in terms of epochs,
where the update leakage is restricted to a fixed time interval.
If no search has been issued for the keyword being updated

Setup(1λ):

1: n← A(1λ); (σ̂, pp)← HICKAE.Setup(1λ, n)
2: (pk, sk)← HICKAE.KeyGen(1λ)
3: ∀ i ∈ [n], (σ′

i, eki)← HICKAE.IGen(1λ, i, pp)
4: σ′ ← {σ′

i}i∈[n]; (Σ,Corr)← HICKAE.Prep(sk, σ̂, σ′)
5: akSet← {∅}; ctSet← {∅}
6: return (n, pk, sk,Σ,Corr, akSet, ctSet)

ExtO(S, id):
6: foreach i ∈ S
7: akSet← akSet ∪ {(i, id)}
8: return ak← HICKAE.Ext(sk, S,Σ, id)

EncO(i, id,m):
9: ctSet← ctSet ∪ {(i, id)}

10: return c← HICKAE.Enc(pk, eki, id,m)

IND-CPAb
HICKAE,A(1λ):

11: (n, pk, sk,Σ,Corr, akSet, ctSet)← Setup(1λ)
12: i∗ = ⊥; id∗ = ⊥
13: (st,m0,m1, i

∗, id∗)← AExtO,EncO(pk)
14: if (i∗, id∗) ∈ akSet then return ⊥
15: c∗ ← HICKAE.Enc(pk, eki∗ , id

∗,mb)
16: return b′ ← AExtO,EncO(st, c∗)

IND-ANONb
HICKAE,A(1λ):

17: (n, pk, sk,Σ,Corr, akSet, ctSet)← Setup(1λ)
18: i∗ = ⊥; id∗0 = id∗1 = ⊥
19: (st,m, i∗, id∗0, id

∗
1)← AExtO,EncO(pk)

20: if (i∗, id∗0) ∈ akSet ∨ (i∗, id∗1) ∈ akSet then return ⊥
21: c∗ ← HICKAE.Enc(pk, eki∗ , id

∗
b ,m)

22: return b′ ← AExtO,EncO(st, c∗)

IND-CIAb
HICKAE,A(1λ):

23: (n, pk, sk,Σ,Corr, akSet, ctSet)← Setup(1λ)
24: i∗ = ⊥; id∗0 = id∗1 = ⊥
25: (st, i∗, id∗0, id

∗
1)← AExtO,EncO(pk)

26: if (i∗, id∗0) ∈ ctSet ∨ (i∗, id∗1) ∈ ctSet then return ⊥
27: ak∗ ← HICKAE.Ext(sk, {i∗},Σ, id∗b)
28: return b′ ← AExtO,EncO(st, ak∗)

Figure 2: Security Game for HICKAE.

within the same epoch, the update leakage remains the same
as the standard forward privacy.

Definition 6 (Epoch-Based Forward Privacy of MSE). Let
WSrch(i, e) be the set of keywords that has been searched
over any writer subset containing i during epoch e, i.e.,
WSrch(i, e) = {w : (Srch, w, S, e) ∈ H ∧ i ∈ S}.

An L-adaptively-secure MSE is epoch-based forward-
private if the update leakage LUpdt(i, op, w, f) of any update
(op, w, f) by any writer i /∈ Ic can be written as L′(i, op, f)
provided that w /∈WSrch(i, e), where L′ is stateless.

It is important to note that epoch-based forward privacy
is not inherently weaker than standard forward privacy, as
the length of the epoch interval can be adjusted to enhance
security, similar to epoch-based secure messaging systems
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[32]. A shorter epoch interval results in stronger forward
privacy, as the issued search tokens become invalid sooner.

4. Hidden ID-Coupling KAE

As discussed in §2.2, ICKAE leaks the embedded identity
from the decryption key, leading to KGA. In this section,
we introduce a new Hidden-ID Coupling KAE (HICKAE)
scheme, which conceals the identity and offers the same
properties as ICKAE (e.g., key-aggregate, anonymity). We
start by giving its formal definitions.

4.1. Definitions

Definition 7 (HICKAE). A HICKAE scheme is a tuple of
PPT algorithms defined as follows:
• (σ̂, pp)← Setup(1λ, n): Given a security parameter λ

and a number of classes n, it outputs a trapdoor σ̂ and
public parameters pp.

• (pk, sk)← KeyGen(1λ): Given a security parameter λ, it
outputs a public and private key pair (pk, sk).

• (σ′
i, eki)← IGen(1λ, i, pp): Given a security parameter λ,

a class identifier i, and public parameters pp, it outputs
a class secret σ′

i and a class-binding key eki.
• (Σ,Corr)← Prep(sk, σ̂, σ′): Given the private key sk, a

trapdoor σ̂, and classes’ secret σ′ = {σ′
i}i∈[n], it outputs

a set of shared secrets Σ, and a set Corr that contains
correlations between any two arbitrary classes i ̸= j ∈ [n].

• c← Enc(pk, eki, id,m): Given the public key pk, a class-
binding key eki, an embedded identity id, and a plaintext
m, it outputs the ciphertext c of m.

• ak← Ext(sk, S,Σ, id): Given the private key sk, a set
S ⊆ [n], a shared secrets set Σ, and an embedded identity
id, it outputs an aggregated key ak.

• m← Dec(ak, S, i, c,Corr): Given an aggregated key ak,
a class set S ⊆ [n], a class identifier i, a ciphertext c, and
a correlation set Corr, it outputs plaintext m.

Correctness. For any integers λ, n, any S ⊆ [n], i ∈ S,
id, and m, Pr[Dec(ak, S, i, c,Corr) = m | (σ̂, pp) ←
Setup(1λ, n), (pk, sk) ← KeyGen(1λ), (σ′

i, eki) ←
IGen(1λ, i, pp), (Σ,Corr) ← Prep(sk, σ̂, σ′), c ← Enc(pk,
eki, id,m), ak← Ext(sk, S,Σ, id)] = 1 with σ′ = {σ′

i}i∈[n].
Compactness. The size of both the ciphertext and the
aggregated key is independent of the number of classes.
Confidentiality, Anonymity and Aggregated Key with
Hidden ID. In the chosen-plaintext attack game (Figure 2,
IND-CPA), the adversary distinguishes a ciphertext of one
of its chosen messages (i.e., m0,m1) under its specified
class identifier (i.e., i∗). The anonymity game (IND-ANON)
challenges the adversary with the ciphertext of its chosen
message under one of two IDs (i.e., id∗0, id∗1) it specifies from
the same class (i.e., i∗). The chosen-identity attack game
(IND-CIA) challenges the adversary with the aggregated key
under one of two IDs also from the same class.

Definition 8. HICKAE is X-secure if for any PPT A,∣∣∣Pr[X0
HICKAE,A(1

λ) = 1]−|Pr[X1
HICKAE,A(1

λ) = 1]
∣∣∣ ≤ negl(λ)

Setup(1λ, n):

1: α
$← Zq , σ̂ $← Zp

2: for i ∈ [n] do
3: xi ← σ̂i(mod p) ; [pi]2 ← [α−xi ]2

4: return (σ̂, pp), where pp← {[pi]2}i∈[n]

KeyGen(1λ):

5: τ
$← Zp; γ, δ, ξ $← Zq

6: pk← ([γ]2, [δ]2, [ξ]2); sk← (τ, γ, δ, ξ)
7: return (pk, sk)

IGen(1λ, i, pp):
8: parse pp = {[pi]2}i∈[n]

9: σ′
i

$← Zp; [eki]2 ← [pi]2α
−σ′

i

10: return (σ′
i, [eki]2)

Prep(sk, σ̂, σ′):
11: parse sk = (τ, γ, δ, ξ), σ′ = {σ′

i}i∈[n]

12: for i ∈ [n] do σi ← σ̂i + σ′
i (mod p)

13: for i ̸= j ∈ [n] do
14: [∆i,j ]1 ← [ατ+σi−σj ]1; [∆j,i]1 ← [ατ+σj−σi ]1

15: Σ← {σi}i∈[n]; Corr← {[∆i,j ]1, [∆j,i]1}i ̸=j∈[n]

16: return (Σ,Corr)

Enc(pk, [eki]2, id,m):
17: parse pk = ([γ]2, [δ]2, [ξ]2)

18: r
$← Zq; [c1]2 ← [r]2; [c2]2 ← r[ξ]2; [c3]2 ← r([γ]2+[eki]2)

19: [h]1 ← H(id); c4 ← m⊕G(r[h]1[δ]2)
20: return c← ([c1]2, [c2]2, [c3]2, c4)

Ext(sk, S,Σ, id):
21: parse sk = (τ, γ, δ, ξ), and Σ = {σi}i∈[n]

22: τ ′ $← Zp; k1 ← ατ ′
+ ξ (mod q); [h]1 ← H(id)

23: [k2]1 ← γ
∑

i∈S [α
τ+σi ]1 + [ατ ]1 + δ[h]1α

−τ ′

24: [k3]1 ←
∑

i∈S [α
τ+τ ′+σi ]1

25: return ak← (k1, [k2]1, [k3]1)

Dec(ak, S, i, c,Corr):
26: parse ak = (k1, [k2]1, [k3]1), and c = ([c1]2, [c2]2, [c3]2, c4)
27: parse Corr = {{[∆j,k]1}k∈[n]\{j}}j∈[n]

28: [u]t ← ([k2]1+
∑

j∈S\{i}[∆j,i]1)([c1]2k1−[c2]2)−[k3]1[c3]2
29: return c4 ⊕G([u]t)

Figure 3: Our Proposed HICKAE scheme.

where the games Xb
HICKAE,A(1

λ) are defined in Figure 2 with
X ∈ {IND-CPA, IND-ANON, IND-CIA}.

4.2. Our Concrete HICKAE Scheme

We design HICKAE, an IBE-based KAE scheme that can
hide the identity embedded in the decryption key. The idea is
to bind secrets of encryptors (hereafter referred to as classes)
into ciphertexts. These secrets prevent an untrusted third
party (i.e., the server) that handles delegated decryption from
brute-forcing all possible identities to learn which identity
is currently bound to the provided decryption key. A class

2871



secret is only known by the user, and each class owns a
class-binding key computed from the secret of that class
for encryption. The challenge is to enable decrypting all
ciphertexts (associated with the same identity but different
secrets) created by multiple classes using a single key. We
resolve it by securely establishing correlations between two
arbitrary classes.

Suppose the user holds a private key sk = (τ, γ, δ, ξ),
where τ

$← Zp, γ, δ, ξ $← Zq, publishes a public key pk =
([γ]2, [δ]2, [ξ]2) and public parameters pp ← {[pi]2}i∈[n],
where [pi]2 ← [α−xi ]2 with xi ← σ̂i for i ∈ [n], in which
α is a generator of Zq and σ̂ is a secret trapdoor in Zp

only known by the user. Let σ′
i

$← Zp be a secret of class
i, for i ∈ [n]. Each class i computes its class-binding key
[eki]2 ← [pi]2α

−σ′
i = [α−σ̂i−σ′

i ]2, which is the input with
the public key pk in encryption. The objective of Prep, which
is executed by the user, is to obtain the shared secret of each
class i ∈ [n] as σi ← σ̂i + σ′

i ∈ Zp, and public correlation
values [∆i,j ]1 = [ατ+σi−σj ]1 between two arbitrary classes
i, j ∈ [n] and i ̸= j. In this setup process, the secret of
classes σi, with i ∈ [n], together with [ατ ]1 and [ατ ]t are
not revealed to ensure the security of confined decryption.
The third-party uses the public correlations and the provided
aggregated key given by the user for decryption later.

Let H : {0, 1}∗ → G1 and G : Gt → {0, 1}λ be
two cryptographic hash functions. Figure 3 presents our
HICKAE scheme in detail. Because each class is associated
with a secret class-binding key, the adversary cannot create
ciphertext under its chosen embedded identity itself to guess
the queried one. Each aggregated key is confined to decrypt
ciphertext of a class subset S, thus if a corrupt class is not
included in S, the privacy of the queried identity is protected.

The size of an aggregated key does not depend on the
number of target classes. When decrypting ciphertext of a
target class i, the value [ατ ]1r[α

τ ′
]2 = r[ατ+τ ′

]t that appears
when evaluating [k2]1([c1]2k1 − [c2]2) is canceled out by
the value [ατ+τ ′+σi ]1r[α

−σi ]2 = r[ατ+τ ′
]t when evaluating

[k3]1[c3]2. For other classes not in the target subset, r[ατ+τ ′
]t

cannot be canceled, which leads to failure in decryption,
thereby preserving the message confidentiality of non-target
classes. Also, [ατ ]1 and [ατ ]t are secret, therefore r[ατ+τ ′

]t
cannot be eliminated, which ensures the security of confined
decryption. The correctness of HICKAE can be checked by
noting that:

[u]t = ([k2]1 +
∑

j∈S\{i}

[∆j,i]1)([c1]2k1 − [c2]2)− [k3]1[c3]2

=
(
γ
∑
j∈S

[ατ+σj ]1 + [ατ ]1 + δ[h]1α
−τ ′

+
∑

j∈S\{i}

[ατ+σj−σi ]1
)

× ([r]2(α
τ ′

+ ξ)− r[ξ]2)−
∑
j∈S

[ατ+τ ′+σj ]1r([γ]2 + [α−σi ]2)

= r[h]1[δ]2

Theorem 1. HICKAE is IND-CPA- and IND-ANON-secure
by Definition 8 under the BDH assumption (Definition 9,
Appendix §A.1), and IND-CIA-secure by Definition 8 under
the DL assumption (Definition 10, Appendix §A.1).

We prove the IND-CPA and IND-ANON security of

RSetup(1λ):

1: (σ̂, pp)← HICKAE.Setup(1λ, n)
2: (rpk, rsk)← HICKAE.KeyGen(1λ)
3: return (rpk, rsk, σ̂, pp)

WSetup(1λ, i, pp):

4: (σ′
i, [eki]2)← IGen(1λ, i, pp)

5: (κi,EIDXi)← DSSE.Setup(1λ); ESTkni ← {∅}
6: wski ← (κi, [eki]2)
7: return (wski, σ

′
i,EIDXi,ESTkni)

RPrep(rsk, σ̂, σ′):
1: (Σ,Corr)← HICKAE.Prep(rsk, σ̂, σ′)
2: return (Σ,Corr)

Figure 4: Hermes Setup.

HICKAE by a reduction to the bilinear Diffie-Hellman (BDH)
problem, i.e., compute [hrδ]t from ([h]1, [r]2, [δ]2). We prove
the IND-CIA security by a reduction to the discrete-log (DL)
problem, i.e., compute α−σi from ([1]2, [α

−σi ]2).

Proof. See details in Appendix §A.1.

5. Our Proposed Hermes

We build Hermes from HICKAE to achieve multi-writer
encrypted search with KGA resilience, sublinear search, and
forward privacy. Note that in the multi-writer context, the
writer is referred to as the encryptor/class in HICKAE.

5.1. Setup

We present Hermes setup procedure in Figure 4. Specifically,
the reader executes RSetup procedure, which invokes the
setup algorithm of HICKAE to generate a secret trapdoor σ̂
and public parameters pp, followed by the key generation
algorithm of HICKAE to generate a public/private key pair
(rpk, rsk). Meanwhile, each writer i in the system executes
WSetup procedure to generate a class secret σ′

i, obtain
the class-binding key [eki]2 from its secret and the public
parameters, also generates two main components: (i) the
DSSE encrypted index EIDXi initialized via DSSE.Setup;
and (ii) the search access control component ESTkni con-
taining a set of encrypted sharing tokens (WSetup, ln. 5).
EIDXi and ESTkni are initially empty. The writer keeps its
class-binding key [eki]2 and the DSSE key κi secret, which
will be employed to authorize keyword search ability to the
reader and to update its DSSE index, respectively. Finally, for
efficient search, the reader computes auxiliary information
from its trapdoor and the writers’ secrets, resulting in a
set of shared secrets Σ = {σi}i∈[n] and correlation values
Corr (Algorithm RPrep). The reader sends Corr to the server
while keeping the shared secrets Σ private.

5.2. Update

We present the update procedure of Hermes in Figure 5,
which permits a writer i to update (e.g., add/delete) a
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keyword-file pair (w, f) in the index and authorize the reader
to search. Specifically, writer i first generates a DSSE update
token usse using the back-end DSSE update procedure. To
permit the reader to search for a keyword w and obtain the
up-to-date result, the writer computes ssse, the latest DSSE
trapdoor of w then encrypts it with HICKAE using the class-
binding key [eki]2, in which w is treated as the embedded
ID as cw ← HICKAE.Enc(pk, [eki]2, w, ssse) (Figure 5,
UpdtTkn, ln. 8). Since HICKAE achieves IND-ANON (i.e.,
ciphertext anonymity, see Theorem 1), cw is guaranteed to
conceal the embedded ID (i.e., keyword w).

5.2.1. Partitioning for Sublinear Search. As the encrypted
sharing tokens are created with the reader’s public key, prior
work requires the server to match the reader’s search token
(created by its private key) with all sharing tokens, leading
to linear search complexity. In Hermes, we introduce a novel
partitioning strategy that can reduce the search complexity
to sublinear while preserving KGA-resiliency. Let W be
the keyword universe set. The idea is to let the writer
cluster |W | encrypted sharing tokens into

√
|W | partitions

so that when the reader executes a search, the server can
identify which partition the keyword belongs to, and then
test the reader’s query against O(

√
|W |) encrypted sharing

tokens within that partition. The challenge lies in securely
mapping an authorized keyword to a partition without being
vulnerable to KGA. For example, with a public keyword-
partition mapping H ′: {0, 1}∗ → [0,

√
|W | − 1], when the

reader specifies the partition H ′(w) for efficient look-up
during search, the server can execute dictionary attacks to
learn what are the keywords that belong to H ′(w), thereby
compromising keyword privacy.

To prevent the above attack, our idea is to map an
authorized keyword to a randomized physical partition
that is unlikable with the logical partition of the keyword.
Specifically, given a keyword w, the writer first computes
its logical partition as pid ← H ′(w). The writer then
computes its physical partition as paddr = F (κ, pid), where
F : {0, 1}λ × [0,

√
|W | − 1] → {0, 1}λ is a pseudorandom

function (PRF) and κ is the writer’s secret key. Finally, the
writer encrypts the physical partition paddr with HICKAE
using the logical partition pid as the embedded identity by
cp ← HICKAE.Enc(pk, [eki]2, pid, paddr) (Figure 5, ln. 5).
When the reader searches, the server uses the delegated key
to decrypt and obtain the physical partition of the queried
keyword, and then only tests against encrypted tokens within
that physical partition. Notice that it is completely safe to
reveal the physical partition because it does not leak any in-
formation about the logical partition of the searched keyword
due to the one-way property of PRF and IND-CIA security
of HICKAE, thus achieving KGA-resiliency. Furthermore,
it is necessary to compute the physical partition from the
logical one instead of the keyword so that the number of
ciphertext partitions can be bound to

√
|W |.

Let ESTkni = (PTkni,WTkni) be the set of encrypted
sharing tokens of writer i, where PTkni stores encrypted
partition tokens and WTkni stores encrypted keyword tokens.
An updated keyword has two HICKAE ciphertexts including

UpdtTkn(rpk,wski, i, op, w, f):
1: parse wski = (κi, [eki]2)
2: usse ← DSSE.UpdtTkn(κi, op, w, f)
3: ssse ← DSSE.SrchTkn(κi, w)
4: pid← H ′(w); paddr← F (κi, pid)
5: cp ← HICKAE.Enc(rpk, [eki]2, pid, paddr)
6: Let e be current epoch and t(e) be its encoding by Eq. (1)
7: foreach t′ ∈ Γt(e) ▷ See Eq. (2) for Γt(e)

8: cw,t′ ← HICKAE.Enc(pk, [eki]2, w∥t′, ssse)
9: return ui ← (usse, paddr, cp, cw ← {cw,t′}t′∈Γt(e)

)

Updt(ui,EIDXi,ESTkni):
10: parse ui = (usse, paddr, cp, cw)
11: parse ESTkni = (PTkni,WTkni)
12: if WTkni[paddr] = {∅} then PTkn′i ← PTkni ∪ {cp}
13: WTkn′i[paddr]←WTkni[paddr] ∪ {cw}
14: EIDX′

i ← DSSE.Updt(usse,EIDXi)
15: ESTkn′i ← (PTkn′i,WTkn′i)
16: return (EIDX′

i,ESTkn
′
i)

Figure 5: Hermes Update.

the encrypted keyword token cw and the encrypted partition
token cp. When the writer updates, it sends the DSSE
update token usse, the partition address paddr, and the
HICKAE ciphertext pair (cp, cw) to the server. The server
appends cp to the encrypted partition token set PTkni if
paddr has not appeared previously (i.e., WTkni[paddr] is
empty), and appends cw to the encrypted keyword sharing
token set WTkni[paddr] in the search access control of the
writer (Figure 5, ln. 12–13). Finally, the server executes the
standard DSSE update procedure (DSSE.Updt) on the DSSE
component with usse to update EIDXi (Figure 5, ln. 14).

5.2.2. Forward Privacy without Rebuild. We present
an efficient method that can achieve epoch-based forward
privacy without requiring the writer to rebuild all sharing
tokens periodically per epoch as in prior work [70].
Encoding of Epochs. To avoid a costly rebuild, our idea
is to encode epoch values such that the aggregated keys
provided for the decryption of current ciphertexts do not
compromise the privacy of future updates, while are still
valid for all ciphertexts up to the current epoch. To do so,
our approach is to represent each epoch value as a unique
set such that some of its elements appear in the set of the
previous epoch, but not in the next epoch. The challenge is
to minimize the cardinality of the set, thereby reducing the
size of the aggregated decryption key. We adapt and refine
the set representation in [31], [62] to ensure the cardinality
of the set is only logarithmic in the number of epochs that
can be supported as follows.

Suppose the epoch e corresponds to the time in the
interval [2λ+1 − 1] for some λ ≥ 0. We construct a binary
tree of height λ with 2λ+1− 1 nodes, each corresponding to
the time in the interval [2λ+1 − 1]. Each node of the tree is
represented by a string in {1, 2}≤λ, where 1 denotes taking
the left branch and 2 denotes taking the right branch. The
bijection mapping tag t = (t1, . . . ) ∈ {1, 2}≤λ to epoch e
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is given by:

e(t) = 1 +

|t|∑
i=1

(
1 + (2λ+1−i − 1)(ti − 1)

)
For instance, with λ = 2, this maps the string
ϵ, 1, 11, 12, 2, 21, 22 to the epoch 1, 2, 3, 4, 5, 6, 7, respec-
tively, where ϵ is an empty string. We define an inverse
function t to map epoch e to tag t ∈ {1, 2}≤λ as:

t(e) =


ϵ if e = 1

t(e− 1)∥1 if |t(e− 1)| < λ

t∥2 if |t(e− 1)| = λ

(1)

in which t is the longest string such that t∥1 is a prefix of
t(e− 1). The bijection induces a precedence relation over
{1, 2}≤λ, where t ⪯ t′ (or t′ ⪰ t) iff either t is a prefix of
t′ or there exists t such that t∥1 is a prefix of t and t∥2 is
a prefix of t′. Furthermore, any t ∈ {1, 2}≤λ is associated
with a set Γt ⊂ {1, 2}≤λ given by:

Γt = {t} ∪ {t∥2 : t∥1 is a prefix of t} (2)
that corresponds to the set containing t and all the right-hand
siblings of nodes on the path from t to the root, which also
happens to be the smallest set of nodes that includes a prefix
of all t′ ⪰ t.
Example 1. With λ = 2, there are 2λ+1 − 1 = 7 epochs
each is associated with the following set:
Γϵ = {ϵ}; Γ1 = {1, 2}; Γ11 = {11, 12, 2}; Γ12 = {12, 2};

Γ2 = {2}; Γ21 = {21, 22}; Γ22 = {22}
The sets Γt satisfy the following properties: (1) t ⪯ t′ ⇔
∃u ∈ Γt such that u is a prefix of t′; (2) ∀ t, we have
Γt(e(t)+1) = Γt \{t} if |t| = λ or Γt(e(t)+1) = (Γt \{t})∪
{t∥1, t∥2} otherwise; (3) ∀ t′ ⪰ t, we have ∀u′ ∈ Γt′ ,
∃u ∈ Γt such that u is a prefix of u′. Note that every tag is
of length exactly λ, which can be obtained by padding with
zeros if necessary.

Given that the epoch value can be represented by a small
unique set, the writer can embed the epoch time into the
encrypted sharing tokens to achieve epoch-based forward-
privacy. Specifically, the writer forms the embedded ID in the
encrypted sharing token of keyword w as id = w∥t, where
t ∈ Γt(e) (Figure 5, ln. 6–8). Because |Γt(e)| ≤ λ+ 1, the
ciphertext is expanded by a factor of O(λ). Note that this
method avoids synchronizing ciphertexts to the current epoch,
making them valid for new decryption keys, as commonly
done in forward-secure updatable encryption [35], [62].

5.3. Search

We present the search protocol of Hermes in Figure 6. To
search for a keyword w on a writer subset S, the reader
executes HICKAE.Ext on w and its logical partition H ′(w)
to extract the decryption keys sw and sp, respectively. As
HICKAE achieves IND-CIA (see Theorem 1), sw and sp
conceal w and its logical address H ′(w), respectively, and
therefore, it offers resiliency against KGA. Remark that the
encrypted sharing tokens in Hermes is forward-private due to
the embedded encoded epoch. Therefore, to ensure that sw
can decrypt corresponding encrypted sharing tokens created
by a writer up to the current epoch e during a search, sw

SrchTkn(rsk, S,Σ, w):
3: pid← H ′(w); sp ← HICKAE.Ext(rsk, S,Σ, pid)
4: Pe ← {t′ : t′ is a prefix of t(e)}
5: foreach t′ ∈ Pe

6: sw,t′ ← HICKAE.Ext(rsk, S,Σ, w∥t′)
7: return s← (sp, sw ← {sw,t′}t′∈Pe)

Srch(s, S,EIDX,ESTkn,Corr):
8: parse s = (sp, sw = {sw,t′}t′∈Pe)
9: parse EIDX = {EIDXi}i∈[n], and ESTkn = {ESTkni}i∈[n]

10: foreach i ∈ S
11: parse ESTkni = (PTkni,WTkni)
12: foreach cp ∈ PTkni
13: paddr← HICKAE.Dec(sp, S, i, cp,Corr)
14: if paddr ̸= ⊥ then
15: foreach cw,t′ ∈WTkni[paddr] : t

′ ∈ Pe

16: ssse ← HICKAE.Dec(sw,t′ , S, i, cw,t′ ,Corr)
17: if ssse ̸= ⊥ then
18: Ri ← DSSE.Srch(ssse,EIDXi)

19: return R← ∪iRi

Figure 6: Hermes Search.

must be created by associating w with the set Pe of prefixes
of the encoded epoch t(e) (Figure 6, ln. 4–6). Following the
Example 1 above, at epoch e = 4, with t(e) = t(4) = 12
(Eq. (1)), the reader creates an aggregated decryption key
with t ∈ P4 = {12, 1, ϵ}, which can decrypt all ciphertexts
up to epoch e = 4 but not for those from epochs e ≥ 5. As
the prefix set cardinality is ≤ λ+ 1, the decryption key is
expanded by a factor of O(λ). To this end, the reader sends
the search token s = (sp, sw) to the server.

Next, for each writer i ∈ S, the server uses sp to
decrypt encrypted partition tokens in PTkni, and obtain
the physical partition address paddr of w. Then, the server
uses sw to decrypt the authorized keyword sharing tokens in
WTkni[paddr], thereby obtaining a DSSE trapdoor ssse. With
ssse, the server executes the standard DSSE search protocol
DSSE.Srch over the corresponding EIDXi and obtains the
search result Ri. Finally, the server returns the search result
R = ∪iRi to the reader, which contains all file identifiers
that match the queried keyword. As sharing tokens are
uniformly distributed into

√
|W | physical partitions, and each

partition contains O(
√
|W |) unique tokens, the expected

computational search complexity is O(λ
√
|W |).

5.4. Optimizations

We present several techniques that can be further applied to
optimize search and update efficiency in Hermes.
Preventing Ever-Growing Search Access Control List.
When an update on a keyword w happens, a new HICKAE
ciphertext is appended into a partition WTkn[paddr] to
ensure the reader could always get the latest results. This
leads to an issue that there might be a lot of encrypted
sharing tokens corresponding to the same keyword in a
partition of the sharing component, which enlarges the
search access control component over time and leads to
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increased search complexity. Therefore, it is necessary to
remove stale keyword-sharing tokens and only retain the
latest ones. To address this issue, we can instantiate each
partition WTkn[paddr] as a stack, where every newly updated
encrypted keyword-sharing token is placed on the top of the
stack. During search, the server can prioritize decrypting the
ciphertexts on top of the stack and return the first match.
To remove outdated ciphertexts, the server can continue
decrypting the remaining ciphertexts in WTkn[paddr] to find
other matches that are stale tokens and eliminate them. By
doing this, the size of partitions in the keyword-sharing set
WTkn will not be augmented due to dynamic updates and
the search complexity can be maintained.

Further Reducing Search Complexity. In Hermes, the
search complexity is O(λ

√
|W |) via partitioning. In fact,

we can reduce this complexity further by applying the
proposed partitioning strategy recursively, where O(

√
W )

smaller physical partitions are treated as separate databases
to continue clustering. Let |W ′| = O(

√
|W |) be the size

of each partition after the first partitioning step. With one
more level of partitioning, we can reduce the partition
size to O(

√
|W ′|) = O( 4

√
|W |). Similarly, if we apply

this strategy recursively log |W |
log log |W | times, the size of each

partition becomes O(2log log |W |) = O(log |W |) because
|W | = 2log |W | = 2log log |W | log |W |

log log |W | . Thus, the computa-
tional search complexity on the server is O( log2 |W |

log log |W | ) with
a larger search token size since we need one more token for
each partitioning level, which is O( λ log |W |

log log |W | ) as a trade-off.

5.5. Analysis

Complexity. A Hermes search traverses the target token sets,
which costs O(λ

√
|W |) for each collection, where W is set

of active keywords encrypted by the target writer, before
executing a DSSE search with complexity O(dw), where dw
is the number of updates on the queried keyword. Server
computation is linear in the writer subset size, but search
query size is constant (i.e., O(λ2)) thanks to the compactness
of the HICKAE decryption key, which is independent of the
number of databases to be searched. For each keyword-file
pair update, the token size is O(λ2) and the time complexity
to create an update token is O(λ). If using the recursive parti-
tioning technique, the server search complexity of Hermes is
reduced toO(log2 |W |/ log log |W |+dw) at the cost of larger
search token size, which is O(λ log |W |/ log log |W |+ λ2)
as a trade-off. Our scheme thus realizes sublinear search and
also achieves writer efficiency. No direct interaction between
the reader and any writer during search and update is needed.

Security. We state the security of Hermes as follows.

Theorem 2. Hermes is Lmse-adaptively-secure with for-
ward privacy if HICKAE is IND-CPA-, IND-ANON- and
IND-CIA-secure, and DSSE is Lsse-adaptively-secure with
forward privacy, where LSetup

mse (1λ) = {i}i∈[n], LCrpt
mse (i) =

{UpdtBy(i)},

LSrch
mse (w, S) =

{
{i,LSrch

sse,i(w), w}i∈S if i ∈ Ic,
{i,LSrch

sse,i(w)}i∈S otherwise.

and LUpdt
mse (i, op, w, f) =

{
{i, op, w, f} if i ∈ Ic,
{i,LUpdt

sse,i (op, w, f)} otherwise.

Proof. See Appendix §A.2.

6. Experiment

Implementation. We fully implemented all our proposed
techniques in C++ consisting of approximately 2,000 lines
of code. We used standard cryptographic libraries, including
OpenSSL [6] for PRF and hash functions, PBC [7] and
GMP library [4] for implementing pairing operations and
arithmetic computations, respectively. We used libzeromq
[8] to implement network communication between server
and client. Our source code is available at: https://github.
com/vt-asaplab/Hermes.
Hardware and network. We used a server with 8-core
CPU @ 3.6 GHz and 64 GB memory. For reader/writers,
we used a laptop with CPU @ 2.7 GHz and 16 GB RAM as
a client. The network bandwidth between server and client
is 30 Mbps with 7ms round-trip latency.
Dataset. We evaluated Hermes schemes over three real-
world multi-writer datasets used by prior work [70].

• Enron Email Dataset [11]: It includes about 500K emails of
150 employees. We leveraged the same standard tokenization
method described in Oblix [55]. We stemmed the words
and removed stopwords and words that were > 20 or < 4
characters long or contained non-alphabetic characters. We
considered each employee as a separate writer. Overall, each
collection has an average of 10,944 keywords with a standard
deviation of 7,017.

• Diabetes Dataset (EHR) [12]: 130 US hospitals contribute
101,766 patient records. For each record, we consider the
combination of sex (binary) and age interval (10 years each)
as its keyword and the rest as its data.

• Room Climate Dataset (Sensor) [13]: It contains 540,364
records of human activities under continuous measurements
of room climate information, collected by 12 IoT sensors
located in different places. We consider the climate data
(i.e., temperature and relative humidity) as keywords after
rounded up to the nearest integer.

Counterparts and Parameters Selection. For evaluation,
we created two instantiations of our scheme: (i) Hermes
with HICKAE, one-level of partitioning, and forward privacy
without rebuild described in §5.2.2; and (ii) Hermes+ is
the same as Hermes yet the search complexity is reduced
via recursive partitioning described in §5.4. We compared
our Hermes schemes with FP-HSE [70], the state-of-the-art
multi-writer SE scheme that has the same system model (i.e.,
single-server) as Hermes. We selected its parameters similar
to ours. In particular, we used 256-bit keys for IND-CPA
encryption and PRFs. We used SHA-512 for hash function
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Figure 7: E2E keyword search delay and bandwidth (Enron).
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Figure 8: E2E keyword search delay and bandwidth (EHR).
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Figure 9: E2E keyword search delay and bandwidth (Sensor).

and MNT224 curve for pairings with a 96-bit security level.
For Hermes/Hermes+, we chose λ = 63 as the length of
encoded epochs to allow up to 264 − 1 epochs.

6.1. Overall Results

Keyword search. Figure 7a illustrates the end-to-end delay
in keyword search of our schemes and FP-HSE for Enron
dataset with different numbers of writers. The latency of
all grows almost linearly in the number of writers. Hermes
is about 21.2×–24.7× faster than FP-HSE, while Hermes+

is 136.5×–163.8× faster than FP-HSE. With 25 writers,
Hermes and Hermes+ take approximately 14.2s and 2.2s,
respectively, to process a search, and increase to about 73.2s
and 11.0s, respectively, for 150 writers, while FP-HSE takes
about 301.3s–1807.9s. The overhead of keyword search
mainly comes from pairing operations on the server, in which
decrypting each encrypted sharing token in the search access
control component needs two pairing operations. While
Hermes and Hermes+ only traverse a sublinear number
of encrypted tokens, FP-HSE has to check for all active
keywords, incurring significant longer latency. For Figure 8a–
9a, since EHR and Sensor only contain a small number of

keywords, the performance gap between Hermes schemes and
FP-HSE is closer, in which Hermes and Hermes+ outperform
FP-HSE by 1.2×–1.5× for EHR and 1.2×–1.4× for Sensor.

Reader’s bandwidth. Figure 7b shows the search bandwidth
between the reader and the server for our Hermes schemes
and FP-HSE on the Enron dataset. The network overhead in
Hermes and Hermes+ increases from 20.7 KB to 47.2 KB
and 21.0 KB to 47.5 KB, respectively, corresponding to the
cases ranging from 25 to 150 writers, in which most is for
receiving search output, while that of FP-HSE is 8.1 KB–
34.5 KB. For Hermes and Hermes+, they incur 12.6 KB–
12.9 KB more network overhead per search operation than
FP-HSE as its search query aggregates decryption power for
all ciphertexts up to the current epoch. Although Hermes and
Hermes+ require larger communication cost for search, they
do not need costly rebuild to maintain forward privacy as
FP-HSE. A similar tendency can be observed in Figure 8b–
9b. For Figure 9b, the number of matching results in
DSSE is large, which accounts for significant amount of
communication overhead and dominates the query size. Thus,
the bandwidth costs of all schemes are close together.

Keyword update. Figure 10a presents the end-to-end delay
in keyword update of our Hermes schemes and FP-HSE
for different database sizes based on the number of unique
keywords and varying numbers of updates. For forward
privacy, FP-HSE needs a rebuild to update all ciphertexts to
the newly incremented epoch, followed by executing updates.
We increase the size of keyword universe set from 104 to
6.104, and increase the number of updated keywords from
25 to 150. It is noticeable that when increasing the number
of unique and updated keywords, the total latency of all
grows linearly. For FP-HSE, its latency is around 54.9s–
331.7s, while Hermes and Hermes+ only take 3.5s–21.3s to
process 25–150 keyword updates since they do not require
a costly rebuild, thus is 15.3×–17.1× faster than FP-HSE.
For smaller numbers of updated keywords, Hermes schemes
are faster than FP-HSE 3.8×–4.2× for EHR (Figure 11a)
and 1.8×–2.2× for Sensor (Figure 12a).

Figure 10b shows the separate rebuild cost w.r.t. varying
keyword universe set sizes 104–6.104, where FP-HSE takes
54.4s–328.7s as the end-to-end delay, and Hermes and
Hermes+ do not require rebuild. Figure 11b–12b illustrate
the rebuild latency for smaller numbers of keywords on
EHR and Sensor datasets, respectively, which costs 0.8s–
27.4s for FP-HSE. Figure 10c shows the update delay of
Hermes schemes and FP-HSE (without rebuild) for different
numbers of newly updated keywords. FP-HSE takes 0.5s-
3.0s to process for the cases increasing from 25 to 150
keywords. For Hermes and Hermes+, their latency is about
2.9s–17.9s to update the index and the search access control
with forward privacy (without rebuild). Also, Hermes and
Hermes+ need to compute and enclose an encrypted partition
token for each updated keyword. However, this cost can be
reduced by storing the state of each partition on the writer to
check if the partition is currently empty or not, and then only
enclosing necessary encrypted partition tokens in updates.
Figure 11c–12c demonstrate similar trends in the update
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Figure 10: Keyword update delay (Enron). The total update cost with forward privacy (FP) (a) equals the cost to rebuild the index (b) plus
the cost to update the index (c). Unlike FP-HSE, Hermes/Hermes+ does not need a rebuild process to ensure FP of subsequent updates.
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Figure 12: Keyword update delay (Sensor).

latency of Hermes schemes and FP-HSE but for smaller
numbers of updated keywords.

6.2. Cost Breakdown

Keyword update. Since Hermes is close to Hermes+

regarding the total update latency (as shown in Figure 10c),
we only present the detailed keyword update cost of Hermes
in Figure 13a. As most overhead is dominated by writer
processing, the latency incurred by the server and communi-
cation is hardly visible. For 25–150 updated keywords, the
server only takes 0.6ms–2.9ms, which is about 0.02% of
the total delay to process updates based on update tokens
received from the writer. The network time to send update
tokens by the writer is 7.7ms–46.4ms, corresponding to 0.3%
of the total delay. Most overhead is for writer processing in
which it takes 2.9s–17.5s, which accounts for about 99.7%
of the delay to create update tokens for 25-150 keywords.
Keyword search. Figure 14a demonstrates the detailed

cost of keyword search of Hermes for varying numbers
of writers. Three factors contributing to the total delay
include reader processing, communication latency and server
processing. The reader takes 36.1ms–192.8ms, accounting for
0.3% of the total to create a search token, which is hardly
visible since most latency is dominated by the overhead
on the server. The communication delay is 9.3ms–16.5ms,
accounting for less than 0.1% of the whole latency. Most
overhead stems from server processing, where it takes 14.2s–
72.9s, corresponding to 99.7% of the total delay to execute
search for different subset sizes from 25 to 150 writers.
We present the detailed cost of Hermes+ in Figure 14b.
The reader latency, communication and server overhead
correspondingly are 98.4ms–409.2ms, 12.7ms–19.9ms, and
2.1s–10.6s, which contribute 3.7%–4.5%, 0.2%–0.6%, and
94.9%–96.1% to the total delay, respectively.

Setup time. Figure 13b shows the end-to-end setup time of
Hermes and FP-HSE. Hermes, Hermes+ and FP-HSE take
66.4s–375.4s, 82.0s–394.3s and 67.1s–403.5s, respectively,
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Figure 14: Detailed cost of keyword search (Enron).

to initialize their search index and search access control
corresponding to the number of unique keywords 104–6.104.
Storage Cost. In Hermes, the reader stores a 112B private
key and a 28B shared secret per writer, which is 4.2KB
in total. Each writer stores a 168B class-binding key and a
504B public key. For Enron, each writer outsources an access
control component of 62.8MB on average, and a DSSE index
of about 10.8MB to the server, which is approximately
10.8GB in total for 150 writers in the whole dataset.

6.3. Discussion

Hermes adapts the modular hybrid design from [70],
which consists of two independent components: a DSSE-
encrypted index and a search access control component.
Consequently, to ensure a fair comparison with our main
counterpart [70] and to highlight Hermes’s advantages in
providing more secure and efficient search access control, we
implemented the DSSE-encrypted index in our experimental
evaluation using a standard forward-private DSSE scheme
similar to that in [70].

However, it is important to note that Hermes, like any
HSE design, is not restricted to a specific DSSE scheme
for constructing the encrypted index. In fact, the encrypted
index in Hermes can be instantiated with various advanced
DSSE designs, such as backward-private schemes [18], [65],
volume-hiding mechanisms [46], [14], [14], [65], leakage-
suppression techniques [47], [36], and search access pattern
obfuscation [25], [64] for enhanced security. This flexibility
is a key advantage of the hybrid SE model, making it
more desirable than prior multi-user SE approaches. When
Hermes is instantiated with these advanced DSSE schemes,
the overall performance overhead comprise the experimental
results we reported, plus any additional overhead specific

to the chosen DSSE scheme for processing the encrypted
index after obtaining the keyword trapdoor from the search
access control component.

7. Related Work

(D)SSE. Song et al. [63] were the first to propose and
formalize SE, which was later extended by a series of DSSE
schemes that offer secure search over encrypted data plus
dynamic update via an encrypted index [22], [37], [66],
[30], [40], [23]. Early DSSE constructions, however, suffer
from significant leakage (e.g., updated keywords, historical
updates, volume), making them vulnerable to severe attacks
(e.g., file-injection [77], leakage-abuse [21], [45], [73]).
Substantial advancements have since been made to enhance
the security of DSSE by enabling desirable security properties
such as forward privacy [17], backward privacy [18], [65],
volume-hiding [46], [14], [14], [65]. While DSSE leaks
search and access patterns, attacks exploiting these patterns
[58], [72], [38] require additional stringent assumptions, such
as auxiliary knowledge of the user’s exact query sequence
and sparsely distributed queries, which may be difficult to
achieve in practice [45]. Meanwhile, some approaches sought
to obfuscate patterns leakage for added assurance, using
cryptographic techniques such as Oblivious RAM or Private
Information Retrieval [42], [29], [51], or differential privacy
[61], leading to high computation and communication costs.
DSSE mainly supports single-user functionalities, where the
encrypted data can only be searched or updated by its owner.
Multi-User SE. Several approaches have been proposed to
enable different multi-user encrypted search functionalities
(e.g., multi-reader, multi-writer, or both [44]). Some extend
DSSE to multi-reader encrypted search by sharing the search
token of the data owner with multiple readers through
key exchange [24], broadcast encryption [28], or proxy re-
encryption [39]. Other works enable both multi-reader and
multi-writer on top of DSSE by either requiring all users to
be trusted [29] or harnessing distributed servers with secure
computation to enforce search access control [51].

PKSE offers multi-writer encrypted search without re-
quiring strong assumptions, where the writers can authorize
the reader by encrypting their authorized keywords with
the reader’s public-key encryption [16], [75], [15], [74],
[54], [52]. Some PKSE approaches leverage key-aggregate
encryption to make the reader’s query size more compact [27],
[59], [71]. However, most PKSE designs face performance
and security challenges including the lack of forward privacy
[16], [15], [74], [52], [54], vulnerability to KGA [19], and
high processing overhead due to linear search complexity and
expensive public-key operations. Some attempt to prevent
KGA by using a third party/authority [74], [71], [54],
[52], distributed servers [49], [20], [53], or via public-key
authenticated encryption [43] (yet numerous attacks were
found [57], [60]). Recently, Wang et al. [70] proposed a
new hybrid SE model that combines PKSE and DSSE to
enable multi-writer encrypted search with sublinear search
complexity (in the writer’s database size). However, the

2878



proposed hybrid design incurs a high overhead on the writer
for forward privacy and is vulnerable to KGA. A recent
hybrid scheme is resilient to KGA and offers forward privacy;
however, it requires distributed servers, incurs linear search
complexity, and does not offer compact search [50] due to
the use of standard public-key encryption.
TEE-based SE. There are several SE systems that use a
Trusted Execution Environment (TEE) (e.g., AMD SEV, Intel
SGX) to enable encrypted query functionalities with diverse
functionalities (e.g., SQL [33]) and security features (e.g.,
pattern obfuscation [41], [34], [55], forward and/or backward
privacy [67], [68]). However, these systems require strong
security assumptions on the security hardware (e.g., tamper-
free, isolation, side-channel resistance).

8. Conclusion

In this paper, we proposed and designed Hermes, a
new HSE scheme that offers multi-writer encrypted search
functionalities with high-security guarantees and efficient
performance. Compared with the prior multi-writer designs
(e.g., HSE, PKSE), Hermes offers an optimized search
complexity, which is sublinear in the number of active
keywords. In addition, our scheme can prevent KGAs and
maintain forward privacy with low writer overhead, which
has become an essential security standard for searchable
encrypted systems.
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Appendix A.
Security Proofs

A.1. Proof of HICKAE (Theorem 1)

Definition 9 (Bilinear Diffie-Hellman). Let G1,G2,Gt be
groups of prime order q, and e : G1×G2 → Gt be a bilinear
pairing. Let P1 be a generator of G1 and P2 be a generator
of G2. The Bilinear Diffie-Hellman problem (BDHP) is the
following: Given aP1 ∈ G1 and b1P2, b2P2 ∈ G2 for some
a, b1, b2 ∈ Zq, compute e(P1, P2)

ab1b2 .

Lemma 1. HICKAE is IND-CPA-secure by Definition 8
under the BDHP assumption by Definition 9.

Proof. Given an IND-CPA adversary A, we build B below
that solves the Bilinear Diffie-Hellman problem (BDHP),
i.e., computes [ab1b2]t from ([a]1, [b1]1, [b1]2, [b2]2).
1) Sample î

$← [n], τ $← Zp, and γ, ξ
$← Zq . Also, initialize

an empty map T.
2) Set [δ]2 ← [b1]2 (i.e., δ = b1) and pk← ([γ]2, [δ]2, [ξ]2).

Sample σ̂
$← Zp, then initialize pp← {[pi]2}i∈[n], where

[pi]2 ← [α−σ̂i

]2, for i ∈ [n].
3) Execute HICKAE.IGen for classes i ∈ [n] to obtain class

secrets {σ′
i}i∈[n], class-binding keys {[eki]2}i∈[n], then

execute HICKAE.Prep to obtain the shared secrets and
correlation set (Σ,Corr).

4) Simulate the oracle G by lazy programming, i.e., on a
new query [u]t, return G([u]t)← v, where v

$← {0, 1}λ.
5) Upon H query on id:

a) If (id, [h]1, x, θ) exists in T, return [h]1.
b) Otherwise, (id, [h]1, x, θ) has not appeared in T, pick

x
$← Zq, flip a coin that outputs a bit θ = 1 with

probability ρ, θ = 0 otherwise. If θ = 1, return
[h]1 ← [x]1. Otherwise, θ = 0, return [h]1 ← x[a]1.
Record (id, [h]1, x, θ) in the map T.

6) Upon EncO query on plaintext m, class identifier i and
embedded identity id as input:
a) Retrieve (id, [h]1, x, θ) from the map T.
b) Sample r

$← Zq, set [c1]2 ← [r]2, [c2]2 ← r[ξ]2,
[c3]2 ← r([γ]2+[eki]2), and c4 ← m⊕G(r[h]1[δ]2).

c) Return c← ([c1]2, [c2]2, [c3]2, c4).
7) Upon ExtO query on S ⊆ [n] and id:

a) If î /∈ S, get (id, [h]1, x, θ) from T, return
(k1, [k2]1, [k3]1), where k1 ← ατ ′

+ ξ, with τ ′
$← Zp,
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[k2]1 ← γ
∑

j∈S [α
τ+σj ]1 + [ατ ]1 + x[b1]1α

−τ ′
, and

[k3]1 ←
∑

j∈S [α
τ+τ ′+σj ]1.

b) Otherwise î ∈ S, retrieve (id, [h]1, x, θ) from the map
T. If θ = 1, return (k1, [k2]1, [k3]1), where k1 ←
ατ ′

+ ξ, with τ ′
$← Zp, [k2]1 ← γ

∑
j∈S [α

τ+σj ]1 +

[ατ ]1 + x[b1]1α
−τ ′

, and [k3]1 ←
∑

j∈S [α
τ+τ ′+σj ]1.

Otherwise, abort and output a random Gt element.
8) Receive (st,m0,m1, i

∗, id∗)← AExtO,EncO(pk).
9) If î ̸= i∗, abort and output a random Gt element.

10) First query for H(id∗) to obtain (id∗, [h∗]1, x
∗, θ) from

T.
11) If θ = 1, abort.
12) Simulate the ciphertext as follows:

a) Sample b
$← {0, 1}. Set [c1]2 ← [b2]2, [c2]2 ← [b2]2ξ,

and [c3]2 ← [b2]2(γ + α−σi∗ ).
b) Set c4 ← mb ⊕ v∗b with v∗b

$← {0, 1}λ ∀ b ∈ {0, 1}.
c) Return c∗ ← ([c1]2, [c2]2, [c3]2, c4).

13) Receive b′ ← AExtO,EncO(st, c∗).
14) Randomly pick one query [u∗]t to the G oracle.
15) Output [u∗]t/x

∗.
If B does not abort, it simulates the IND-CPA experiment

for A successfully. For A to win the game, A must have
queried G on b2[h

∗]1[δ]2, which matches how encryption
is done, for otherwise b is information-theoretically hidden
from A. B can therefore extract [h∗b2δ]t/x

∗ = [ab1b2]t as
a BDHP solution, with probability 1/qG, where qG is the
number of oracle queries to G that A made.

It remains to analyze the probability that algorithm B does
not abort during the simulation. Suppose A makes a total of
qE ExtO queries with î ∈ S, then the probability that B does
not abort is ρqE . The probability that it does not abort during
the challenge step is (1−ρ)/n. Therefore, the probability that
B does not abort during the simulation is ρqE (1−ρ)/n. This
value is maximized at ρopt = 1−1/(qE+1). Using ρopt, the
probability that B does not abort is at least 1/ne(1+qE).

Lemma 2. HICKAE is IND-ANON-secure by Definition 8
under the BDHP assumption by Definition 9.

Proof. Given an IND-ANON adversary A, we build B below
that solves the Bilinear Diffie-Hellman problem (BDHP), i.e.,
computes [ab1b2]t from ([a]1, [b1]1, [b1]2, [b2]2).
Repeat steps 1-7 in the above proof for Lemma 1.
8) Receive (st,m∗, i∗, id∗0, id

∗
1)← AExtO,EncO(pk).

9) If î ̸= i∗, abort and output a random Gt element.
10) First query for H(id∗0) and H(id∗1) to obtain

(id∗0, [h
∗
0]1, x

∗
0, θ0) and (id∗1, [h

∗
1]1, x

∗
1, θ1) from T.

11) If θb∗ = 1 for any b∗ ∈ {0, 1}, abort.
12) Simulate the ciphertext as follows:

a) Sample b
$← {0, 1}. Set [c1]2 ← [b2]2, [c2]2 ← [b2]2ξ,

and [c3]2 ← [b2]2(γ + α−σi∗ ).
b) Set c4 ← m∗ ⊕ v∗b with v∗b

$← {0, 1}λ ∀ b ∈ {0, 1}.
c) Return c∗ ← ([c1]2, [c2]2, [c3]2, c4).

13) Receive b′ ← AExtO,EncO(st, c∗).
14) Randomly pick one query [u∗]t to the G oracle.
15) Output [u∗]t/x

∗
b′ .

If B does not abort, it simulates the IND-ANON experi-
ment for A successfully. For A to win the game, A must have
queried G on b2[h

∗
b′ ]1[δ]2, which matches how encryption

is done, for otherwise b is information-theoretically hidden
from A. B can therefore extract [h∗

b′b2δ]t/x
∗
b′ = [ab1b2]t as

a BDHP solution, with probability 1/qG, where qG is the
number of oracle queries to G that A made.

Suppose A makes a total of qE ExtO queries with î ∈
S, then the probability that B does not abort is ρqE . The
probability that it does not abort during the challenge step is
(1− ρ)2/n. Therefore, the probability that B does not abort
during the simulation is ρqE (1− ρ)2/n.

Definition 10 (Discrete-Log). Let G be a group of prime
order q, and P be a generator of G. The Discrete-Log
problem (DLP) is the following: Given Q ∈ G, compute the
smallest positive integer a ∈ Zq such that aP = Q.

Lemma 3. HICKAE is IND-CIA-secure by Definition 8 under
the DLP assumption by Definition 10.

Proof. Given an IND-CIA adversary A, we build B below
that solves the Discrete-Log problem (DLP), i.e., computes
a ∈ Zq from [a]2 and [1]2.

1) Sample î
$← [n], τ

$← Zp, and γ, δ, ξ
$← Zq. Also,

initialize an empty map T.
2) Set pk ← ([γ]2, [δ]2, [ξ]2). Sample σ̂

$← Zp, then ini-
tialize pp ← {[pi]2}i∈[n], where [pi]2 ← [α−σ̂i

]2, for
i ∈ [n].

3) Execute HICKAE.IGen for classes i ∈ [n] to obtain class
secrets {σ′

i}i∈[n], class-binding keys {[eki]2}i∈[n], then
execute HICKAE.Prep to obtain the shared secrets and
correlation set (Σ,Corr).

4) Simulate the oracle G by lazy programming, i.e., on a
new query [u]t, return G([u]t)← v, where v

$← {0, 1}λ.
5) Upon H query on id:

a) If (id, [h]1, θ) exists in T, return [h]1.
b) Otherwise, (id, [h]1, θ) has not appeared in T, pick

x
$← Zq, flip a coin that outputs a bit θ = 1 with

probability ρ, θ = 0 otherwise. If θ = 1, return
[h]1 ← x[δ]1. Otherwise, θ = 0, return [h]1 ← [x]1.
Record (id, [h]1, θ) in the map T.

6) Upon EncO query on plaintext m, class identifier i and
embedded identity id as input:
a) Retrieve (id, [h]1, θ) from the map T.
b) Sample r

$← Zq, set [c1]2 ← [r]2, [c2]2 ← r[ξ]2,
[c3]2 ← r([γ]2+[eki]2), and c4 ← m⊕G(r[h]1[δ]2).

c) Return c← ([c1]2, [c2]2, [c3]2, c4).
7) Upon ExtO query on S ⊆ [n] and id:

a) Retrieve (id, [h]1, θ) from the map T.
b) Return (k1, [k2]1, [k3]1), where k1 ← ατ ′

+ ξ, with
τ ′

$← Zp, [k2]1 ← γ
∑

j∈S [α
τ+σj ]1 + [ατ ]1 +

[h]1α
−τ ′

, and [k3]1 ←
∑

j∈S [α
τ+τ ′+σj ]1.

8) Receive (st, i∗, id∗0, id
∗
1)← AExtO,EncO(pk)

9) If î ̸= i∗, abort and output a random Zq element.
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10) First query for H(id∗0) and H(id∗1) to obtain
(id∗0, [h

∗
0]1, θ0) and (id∗1, [h

∗
1]1, θ1) from T.

11) If θb∗ = 1 for any b∗ ∈ {0, 1}, abort.
12) Simulate the aggregated key as follows:

a) Sample b
$← {0, 1}.

b) Set k1 ← ατ ′
+ ξ, with τ ′

$← Zp, [k2]1 ←
γ[ατ+σi∗ ]1 + [ατ ]1 + [hb]1α

−τ ′
, and [k3]1 ←

[ατ+τ ′+σi∗ ]1.
c) Return ak∗ ← (k1, [k2]1, [k3]1).

13) Receive b′ ← AExtO,EncO(st, ak∗).
If B does not abort, it simulates the IND-CIA experiment

for A successfully. For A to win the game, A must find
[ατ ]1 to evaluate ([k2]1− [ατ ]1)(k1[1]2− [ξ]2)− [γ]2[k3]1 =
[h∗

b′ ]1[δ]2, and then compare it with [h∗
0]1[δ]2 and [h∗

1]1[δ]2 to
know whether id∗0 or id∗1 is chosen as the challenge. Otherwise
b is information-theoretically hidden from A. With any two
corrupt classes j1 and j2, their identity correlation values
are [ατ+σj1−σj2 ]1, [ατ+σj2−σj1 ]1, and their identity-binding
keys are [α−σj1 ]2, [α−σj2 ]2, then [ατ ]1 can be obtained if
α−σj1 and α−σj1 are revealed, which happen if and only if
the discrete-log problem were solved.

Similar to the analysis in the proof of Lemma 2, the
probability that B does not abort is also ρqE (1−ρ)2/n, where
qE is the total number of EncO queries that B made.

Putting it together. Lemma 1, Lemma 2 and Lemma 3
prove the IND-CPA, IND-ANON and IND-CIA security of
HICKAE, respectively. Together these complete the proof of
Theorem 1.

A.2. Proof of Hermes (Theorem 2)

Proof. Let Lsse,i = {LSetup
sse,i ,LSrch

sse,i,L
Updt
sse,i } and Ssse,i be the

leakage functions and the simulator of the i-th DSSE instance
for i ∈ [n], respectively. The initially empty EIDXi and
ESTkni leak nothing. LSetup

hse only leaks the number of writers
and their identifiers.

Let WSrch(i, e) = {w : (Srch, w, S, e) ∈ H ∧ i ∈ S}
be the set of keywords that has been searched at epoch
e for writer subsets containing i. We parse DSSE update
leakage as LUpdt

sse,i (op, w, f) = {∅}, if w /∈ WSrch(i, e); and
LUpdt
sse,i (op, w, f) = LSrch

sse,i(w), otherwise. Let H ′: {0, 1}∗ →
[0,
√
W − 1] be a public keyword-partition mapping.

We derive a (q + 1)-hybrid sequence starting from
Hybrid0 = IND0

MSE, and the last hybrid Hybridq is
exactly IND1

MSE. For ℓ ∈ {0, . . . , q − 1}, the only differ-
ence between Hybridℓ and Hybridℓ+1 is that the oracle
responds to the (ℓ+1)-th query in Hybridℓ with input b = 0,
while responding to the (ℓ+1)-th query in Hybridℓ+1 with
input b = 1. The oracles implicitly take the current epoch e
as an input.

We prove that A cannot distinguish IND0
MSE from

IND1
MSE with non-negligible probability by showing that

each hybrid (except the first) is indistinguishable from its
previous.

For ℓ ∈ {0, . . . , q− 1}, Histℓ+1 can fall into three cases:

(1) CrptOb on (i0, i1): It will only be answered when
writer identifier i = i0 = i1. Since the information related
to the corrupt writer is revealed, it requires that the tuples
updated by writer i (i.e., UpdtBy(i)) are the same for either
b = 0 or b = 1. We have Hybridℓ = Hybridℓ+1 as the
views of A are identical in this case.

(2) SrchOb on ({Sk, wk}k∈{0,1}): As the target writ-
ers of any search leaks, it will only be answered when
S = S0 = S1. If there exists some writer i ∈ S such that
(CrptO, i) ∈ H, the keyword to be searched is revealed,
the oracle only answers the query when w0 and w1 are
identical. In this case, the oracle simply invokes the simulator
Ssse,i with LSrch

sse,i(w) to simulate DSSE search regarding
the DSSE trapdoor of w encrypted with HICKAE during
the previous UpdtO. The challenger returns the HICKAE
keyword decryption key of (S,w∥t) (detailed in §5.2.2) as
sw, and the HICKAE partition decryption key of (S,H ′(w))
as sp. With recursive partitioning, the challenger executes
similarly but for more partition levels. The indistinguisha-
bility between Hybridℓ and Hybridℓ+1 is guaranteed by
IND-CIA security of HICKAE and Lsse-adaptive security of
DSSE.

(3) UpdtOb on ({ik, opk, wk, fk}k∈{0,1}): The oracle
answers the queries when i = i0 = i1, as the writer identifier
will be leaked during update. Obviously, if writer i has been
corrupt, A will have the knowledge of the update tuples, and
the oracle will only be answered when two update tuples
are identical in this case.

Depending on whether or not both keywords w0 and w1

have been searched over class i at current epoch e, there are
two cases as follows:
• If w0 ∈WSrch(i, e) ∧ w1 ∈WSrch(i, e), it is required that

their update leakages are identical, which is essentially
LSrch
sse,i as LUpdt

sse,i = LSrch
sse,i for this case. It typically requires

w = w0 = w1. The oracle invokes DSSE simulator Ssse
with LSrch

sse,i(w) to simulate usse.
• Otherwise, the oracle invokes the DSSE simulator Ssse

with LUpdt(opb, wb, fb) = {∅} to simulate usse.
The oracle calls the DSSE simulator Ssse,i to simulate i’s

DSSE keyword trapdoor ssse, which is HICKAE-encrypted as
cw, treating wb∥t, where t ∈ Γt(e) (see §5.2.2), as the embed-
ded identity. Also, the oracle takes paddr← Tpaddr[H

′(w)]
if Tpaddr[H

′(w)] ̸= 0λ. Otherwise, it picks a µ-bit string as
paddr and puts it in Tpaddr[H

′(w)], then outputs an encrypted
partition token cp for paddr, with H ′(w) as the embedded
identity.

The indistinguishability between Hybridℓ and
Hybridℓ+1 is guaranteed by IND-CPA and IND-ANON
security of HICKAE, and Lsse-adaptive security of DSSE.

By repeating the above procedure for ℓ ∈ [q − 1], we
conclude that A cannot distinguish Hybrid0 = IND0

MSE

from Hybridq = IND1
MSE. Thus Hermes is Lmse-adaptively-

secure.
Forward privacy of MSE (Definition 6) constrains the

update leakage when updating keywords that have not
been searched at the same epoch. In Hermes, for this case
(i.e., w /∈ WSrch(i, e)), the leakage LUpdt

mse is {i}, fulfilling
Definition 6. Thus, Hermes is forward-private.
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Appendix B.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

B.1. Summary

The paper introduces a new hybrid searchable encryption
scheme that supports multi-writer, forward privacy, and
sublinear search complexity. The scheme uses a new identity-
based encryption to prevent keyword-guessing attacks, an
epoch encoding scheme to ensure forward privacy, and a
recursive partitioning algorithm to optimize search com-
plexity. The scheme is proven secure and offers improved
performance compared to state-of-the-art.

B.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established Field

B.3. Reasons for Acceptance

1) This paper provides a valuable step forward in an estab-
lished field. Particularly, it improves the prior state-of-the-
art in both security and efficiency through a new identity-
based encryption scheme with hidden identity, a new
tree-based epoch encoding technique, and a partitioning
approach.

2) The paper includes formal proofs for the security of their
constructions.

3) The paper includes experimental comparisons with the
state-of-the-art.

B.4. Noteworthy Concerns

The presentation of the paper makes it difficult to
understand for a broader audience, and the heavy notation
hurts readability.
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