
This paper is included in the Proceedings of the
33rd USENIX Security Symposium.
August 14–16, 2024 • Philadelphia, PA, USA

978-1-939133-44-1

Open access to the Proceedings of the
33rd USENIX Security Symposium

is sponsored by USENIX.

MUSES: Efficient Multi-User Searchable
Encrypted Database

Tung Le, Virginia Tech; Rouzbeh Behnia, University of South Florida;
Jorge Guajardo, Robert Bosch Research and Technology Center;

Thang Hoang, Virginia Tech
https://www.usenix.org/conference/usenixsecurity24/presentation/le

MUSES: Efficient Multi-User Searchable Encrypted Database

Tung Le Rouzbeh Behnia Jorge Guajardo Thang Hoang
Virginia Tech University of South Florida Robert Bosch LLC – RTC Virginia Tech

Abstract
Searchable encrypted systems enable privacy-preserving key-
word search on encrypted data. Symmetric systems achieve
high efficiency (e.g., sublinear search), but they mostly sup-
port single-user search. Although systems based on public-
key or hybrid models support multi-user search, they incur
inherent security weaknesses (e.g., keyword-guessing vulner-
abilities) and scalability limitations due to costly public-key
operations (e.g., pairing). More importantly, most encrypted
search designs leak statistical information (e.g., search, re-
sult, and volume patterns) and thus are vulnerable to devas-
tating leakage-abuse attacks. Some pattern-hiding schemes
were proposed. However, they incur significant user band-
width/computation costs, and thus are not desirable for large-
scale outsourced databases with resource-constrained users.

In this paper, we propose MUSES, a new multi-writer en-
crypted search platform that addresses the functionality, se-
curity, and performance limitations in the existing encrypted
search designs. Specifically, MUSES permits single-reader,
multi-writer functionalities with permission revocation and
hides all statistical information (including search, result, and
volume patterns) while featuring minimal user overhead. In
MUSES, we demonstrate a unique incorporation of various
emerging distributed cryptographic protocols including Dis-
tributed Point Function, Distributed PRF, and Oblivious Lin-
ear Group Action. We also introduce novel distributed proto-
cols for oblivious counting and shuffling on arithmetic shares
for the general multi-party setting with a dishonest majority,
which can be found useful in other applications. Our experi-
mental results showed that the keyword search by MUSES is
two orders of magnitude faster with up to 97× lower user
bandwidth cost than the state-of-the-art.

1 Introduction

Commodity cloud service (e.g., AWS IAM, Google Cloud
IAM) provides data storage and sharing facilities for a large
number of users. However, data outsourcing might lead to

privacy concerns, especially for sensitive data (e.g., medi-
cal/financial). An adversarial cloud can access and exploit
data illegitimately. Although end-to-end encryption permits
confidentiality, it prevents data utility (e.g., querying, analyt-
ics), thereby invalidating the benefits of outsourcing services.

To address the data utilization and privacy dilemma, Search-
able Encryption (SE) was proposed to enable keyword search
over encrypted data while respecting the confidentiality of
the data and the search query. There are two main SE models
including Symmetric SE (SSE) [12, 27, 29, 40, 45, 49, 71] and
Public-Key SE (PKSE) [4, 8, 10, 83]. While SSE offers high
efficiency, forward/backward privacy [12, 40, 55, 55, 72, 75],
and diverse queries (e.g., range [28, 52, 75]), it only supports
a single user, where the data can only be searched by its
owner. This strictly limits its practicality to apply for real-
world settings, where the data can be contributed by multiple
users. Moreover, SSE leaks statistical information including
search/result/volume patterns, thus are vulnerable to leakage-
abuse attacks [16, 46, 50, 54, 56, 59, 65–67, 81, 85]. To prevent
these leakages, some oblivious SSE schemes (e.g., [27,35,45]
were proposed using Oblivious RAM [70] or Private Infor-
mation Retrieval (PIR) [41]; however, they incur significant
overhead (bandwidth, computation) to the user [64].

On the other hand, PKSE enables multi-user encrypted
search, in which one user (reader) can search on encrypted
documents shared by the other users (writers) [58, 61, 82, 83].
However, PKSE has some security issues including lack of
forward privacy and dictionary attacks. Recently, Wang et al.
proposed Hybrid SE (HSE) [76], which elegantly combines
SSE and PKSE to achieve the benefits of both models: forward
privacy and search efficiency by SSE, and multi-writer capa-
bility by PKSE. Despite its merits, HSE inherits other security
weaknesses of both models, including keyword-guessing vul-
nerabilities and pattern leakages. Given that all existing SE
schemes pose certain fundamental security, functionality, and
efficiency limitations, we raise the following question:

Can we design a new SE scheme that not only supports
multi-writer search but also achieves concrete efficiency with
high security and privacy guarantees simultaneously?

USENIX Association 33rd USENIX Security Symposium 2581

Table 1: Comparison of MUSES with prior encrypted search systems.

Scheme #Servers Search Leakage Forward Backward Multi- Search Complexity (per writer)
L LSearch Privacy Privacy Writer Server Reader Communication

PEKS [10] 1 {kw,sp(kw), rp(kw),sv(kw)} ✗ ✗ ✗ O(dwN
†
) O(λ) O(λ+ns)

SSE [17] 1 {sp(kw), rp(kw),sv(kw)} ✗ ✗ ✗ O(ns) O(λ) O(λ+ns)

NTRU-PEKS [8] 1 {kw,sp(kw), rp(kw),sv(kw)} ✗ ✗ ✗ O(dwN
†
) O(λ) O(λ+ns)

DORY [27] 2 { /0} ✓ ✓ ✗ O(mN) O(logm+N) O(λ logm+N)

FP-HSE [76] 1 {kw,sp(kw), rp(kw),sv(kw)} ✓ ✗ ✓ O(|W |†) O(λ) O(λ+ns)

AESM2 [77] 1 {sp(kw), rp(kw),sv(kw)} ✓ ✗ ✓ O(|W |†) O(λ) O(λ+ns)

Q-µSE [20] 1 {sp(kw), rp(kw),sv(kw)} ✓ ✓ ✗ O(ns) O(ns +nu) O(ns +nu)

Our MUSES ≥ 2 { /0} ✓ ✓ ✓ O(mN) O(τ+N) O(λτ+ns)

• LSearch: Search leakage function with kw as the input keyword; sp: Search pattern; rp: Result pattern; sv: Search volume (see §3 for more details).
• λ: Security parameter; N: Total number of documents; dw: Number of keywords per document. nu: Number of updates after previous search. W : Collection of

all unique keywords in the database (keyword universe); m: Size of keyword representation per document; ns: Number of matched results per keyword search.
• In practice, dw < m≪W , ns ≤ N.
• Number of servers L is considered as a constant number in complexity analysis. We assume document identifiers can be represented using a constant number

of bits to skip this quantity in search complexity.
‡ τ = O(logm) when L = 2, or O(

√
m) when L≥ 3.

† Public-key pairing operations.

1.1 Our Contributions
We answer the above question affirmatively by proposing
MUSES, a new distributed multi-writer encrypted search sys-
tem that achieves a high level of security with concrete effi-
ciency. MUSES achieves the following desirable properties.
• Multi-writer functionalities: MUSES allows single-reader,

multi-writer functionalities similar to other multi-writer SE
schemes (e.g., [7, 58, 61, 76, 77, 82, 84]. MUSES enables
the writers to update their data that can be searched by
the reader. MUSES also permits the writers to revoke the
reader’s search permission with writer-efficiency.

• Security against statistical attacks: MUSES is not vul-
nerable to dictionary attacks, achieves forward/backward
privacy, and hides all pattern leakages simultaneously. Thus,
it has more security guarantees than most prior SE schemes
[10,51,58,61,76,77,79,83]. MUSES offers semi-honest se-
curity with dishonest majority. With L servers, it can achieve
L−1 privacy threshold, meaning that the confidentiality of
data and queries is protected as long as one server is honest.

• User-driven efficiency: MUSES is designed with user effi-
ciency in mind, and therefore, it is highly favorable to thin
users with resource constraints (e.g., mobile devices). In
MUSES, the reader only performs lightweight computations
(e.g., modular additions) and its bandwidth is constant, com-
pared with linear (w.r.t. collection size) in prior oblivious
SE schemes (e.g., [27, 35, 45]). Evaluation results indicate
that MUSES achieves up to 97× lower user bandwidth than
the state-of-the-art oblivious SE. MUSES permits the writer
to revoke the reader’s search permission efficiently by of-
floading all processing tasks to the servers. This is more
efficient than prior systems that do not naturally support
revocation [27, 76] and thus, the writer needs to rebuild the
index itself, which incurs high bandwidth and computation.

• Low server cost: In MUSES, the servers only perform low-

cost operations (e.g., modular addition, rounding over small
modulus). It is more efficient than PKSE/HSE designs that
incur costly pairing operations [4,7,10,32,58,76,77,83,84].

• Fully-fledged implementation and evaluation: We fully
implemented MUSES and evaluated its performance on
commodity servers. Under real environments, experimental
results demonstrated that MUSES performs search 126.8×–
631.8× and 1.6×–3.9× faster than state-of-the-art SE
techniques [27, 76] in the multi-writer and single-writer
settings, respectively. Our implementation is available at
https://github.com/vt-asaplab/MUSES.

Techniques: Multi-party Oblivious Count and Shuffle.
To build MUSES, we construct several multi-party oblivious
protocols that can be of independent interest. We design an
L-party protocol to privately count how many elements in
an additive secret-shared vector equal to a specific (small)
value. Our protocol is novel as it does not require binary-
arithmetic share conversion and/or costly comparison cir-
cuits. It operates in an online/offline model with a highly
efficient online counting, where the parties only communi-
cate in one round and perform lightweight computations
(e.g., addition, circular shift) locally. We also design a new
oblivious shuffle protocol for L parties to randomly permute
an additive secret-shared vector such that one party learns
the shuffled vector, while each other party learns a part of a
permutation composition1. Although there exists an L-party
secret-shared shuffle [33], it is designed for secure commu-
nication, thus its online phase outputs the shares instead
of the shuffled vector. We design a new preprocessing in
a way that the online protocol outputs the shuffled vector
directly. For applications that need shuffled data as output,
our protocol is more direct and round-efficient than [33],
which incurs an additional round for opening.
1A permutation composition is formed by applying L−1 separate permu-

tations π1, . . . ,πL−1 to shuffle a vector d as: πL−1(πL−2(. . .(π1(d)) . . .)).

2582 33rd USENIX Security Symposium USENIX Association

https://github.com/vt-asaplab/MUSES

Table 1 compares MUSES with prior SE designs. To our
knowledge, MUSES is the first multi-writer SE that can pre-
vent all vulnerabilities and achieve high user efficiency (op-
timal bandwidth, low processing) simultaneously. Note that
MUSES makes use of distributed servers to also mitigate in-
herent vulnerabilities in the multi-user setting (e.g., rollback
attacks in Appendix B), albeit at the cost of additional pro-
cessing overhead as a trade-off.

1.2 Technical Highlights
We present the technical highlights of our construction.
MUSES is inspired by DORY [27] – an SSE scheme, and
HSE [76] – a framework that shows how to adapt SSE to the
multi-writer setting. We begin by giving DORY’s overview
and the challenges when adopting it to the multi-writer setting.
We then present high-level ideas to address these challenges.
Brief Overview of DORY. DORY [27] is a (single-client)
oblivious search scheme with dynamic update capability. Its
search index is instantiated with a table structure, where
columns represent keywords for performing search and rows
represent documents with corresponding identifiers. To re-
duce the index size, Bloom Filter (BF) is employed to com-
press the keyword representation per document. The search
index is row-wise encrypted with a symmetric key. To search
for a keyword, the user computes its BF representation, and
executes a PIR protocol based on the Distributed Point Func-
tion (DPF) [41] to privately retrieve K encrypted columns of
the index, where K is a BF membership checking parameter.
The user then decrypts these columns and aggregates them to-
gether to identify what document identifiers match the search
query. To update a document, the user replaces its row in the
index with a new encrypted BF representation.

In principle, DORY can be extended to support multi-writer
(separate reader/writer) by incorporating public-key cryptog-
raphy to distribute the symmetric key of the writer to the
reader. However, due to its cryptographic protocol back-end,
it may incur high processing complexity. Specifically, the
reader’s search complexity is linear to the number of docu-
ments N in the database in terms of both network bandwidth
and computation overhead (due to PIR reconstruction, decryp-
tion, and aggregation sequence) to obtain the search result.
This overhead is significant for thin readers to search on large
data collections. Meanwhile, an efficient search should only
return a small number of matched identifiers. Furthermore, as
the key is shared with the reader directly, it is challenging to
enable access control. For example, a writer may want to re-
strict the reader’s search permission on her index temporarily.
A potential solution is to re-encrypt the search index with a
fresh key unknown to the reader. However, this requires the
writer to download the entire encrypted index, re-encrypt it
with a new key, and then transmit it back to the server. This in-
curs significant bandwidth/processing costs to the writer. Can
we address all these challenges while maintaining efficiency?

Idea 1: Minimize reader overhead by delegating aggre-
gation and decryption tasks to the server. Instead of de-
crypting and aggregating K PIR-retrieved encrypted columns
on the reader side, we delegate all these processing tasks to
the distributed servers securely. Specifically, we develop a
protocol that incorporates Key-Homomorphic Pseudorandom
Function (KH-PRF) [11] and DPF-based PIR [14, 15, 41]
together, which permits the servers to partially decrypt the
encrypted columns to obtain additive shares, and perform
secure aggregation on the shares. Our protocol outputs the
shares of the search result to the servers, which can be opened
afterwards to return only matched document identifiers to
the reader. This process ensures the servers do not learn any-
thing during the partial decryption and aggregation (e.g., what
columns are being aggregated/decrypted and decryption keys),
given that at least one server does not collude with the others.
However, although this strategy reduces the reader’s process-
ing and bandwidth costs, if we open the search result to the
servers at this point, they can learn result patterns (i.e., what
document identifiers match the query), volume patterns (i.e.,
the number of matched documents), thereby inferring search
patterns (i.e., whether the same/different keywords are be-
ing searched). Can we seal all these pattern leakages before
opening while maintaining reader efficiency?

Idea 2: Conceal all pattern leakages via oblivious padding
and random shuffling. To hide volume information, we
perform oblivious padding so that the search result always
contains a fixed small number (ns) of document identifiers2.
We design an oblivious counting protocol based on linear
group action [6], which permits the servers to privately count
the current number of matched documents on the shares of
the search result vector and open the count s to the reader.
Next, the reader creates a padding vector of size ns, which
contains ns− s padded matched values and secret shares it
with L servers. The servers then concatenate (the shares of)
the search result vector and the padding vector together, form-
ing a shared vector of size (N +ns). Our followed step is to
design an L-party oblivious shuffle protocol based on the two-
party scheme in [21], which enables L servers to randomly
permute the concatenated vector on its shares, and open the
permuted vector to one server while other L−1 servers obtain
the permutation composition. Since the permuted vector con-
tains exactly ns document identifiers, all of which have been
obfuscated due to oblivious shuffle, our strategy can conceal
all volume, result, and search pattern leakages. To this end, the
servers send obfuscated identifiers along with the permutation
composition to the reader. The reader obtains the search result
by applying the permutation inverses on the obfuscated list.
Note that our padding and shuffle strategies require one more
communication round in the search procedure; however, the
optimal bandwidth complexity of O(ns) is maintained.

2This assumption is similar to that of volume-hiding SE schemes [5],
where an effective search should only return a small number of results

USENIX Association 33rd USENIX Security Symposium 2583

Idea 3: Minimize writer overhead in revoking reader’
permission via “key rotation” on the servers. To revoke the
reader’s search capability, we re-encrypt the writer’s search
index on the servers with fresh keys unknown to the reader.
At a high level, we incorporate the homomorphic property of
KH-PRF with random masking techniques, which enables the
servers to “rotate” the index that is currently encrypted by the
old KH-PRF keys to the new ones on behalf of the writer in
a privacy-preserving manner. The writer only needs to share
the old and the new fresh KH-PRF keys with the servers, and
does not need to stay involved in the later process.

2 Preliminaries

Notation. || denotes the concatenation operator. λ is the
security parameter and Zp is a ring of integers. We denote by

[n] the set {1, . . . ,n}. x $← [n] means x is selected uniformly
at random from [n]. For integers q and p where q ≥ p ≥ 2,
we define ⌊·⌋p : Zq→ Zp as a rounding function as ⌊x⌋p = i
where i · ⌊q/p⌋ is the largest multiple of ⌊q/p⌋ that does
not exceed x. Given an integer x, x+ denotes x+1 while x−

denotes x− 1. Bold small letters (a) denote vectors, while
capitalized bold letters (M) denote matrices. We denote by
⟨a,b⟩ the dot product of two vectors a and b. Given M,
M[u,∗] and M[∗,v] denote accessing the row u and column
v of M, respectively. M[u,v] denotes accessing the cell at
row u and column v. We denote the execution of protocol
A by L parties (o1;o2; . . . ;oL)← A(i1; i2; . . . ; iL), where the
input/output of each party is separated by a semicolon (;).

Let Σ = (Gen,Enc,Dec) be a public-key encryption:
(pk,sk)←Σ.Gen(1λ) generating a public and private-key pair
with security parameter λ; c←Σ.Enc(pk,m) encrypting plain-
text m with public key pk; m← Σ.Dec(sk,c) decrypting ci-
phertext c with private key sk. Let BF= (Init,Gen,Vrfy) be a
Bloom Filter (BF) [9]: (H1, . . . ,HK)← BF.Init(m,K): gener-
ating K mappings Hk : S → [m] ∀k ∈ [K] with two parameters
m (BF size) and K; u← BF.Gen(S): computing the BF repre-
sentation u∈ {0,1}m of a given set S ; {0,1}←BF.Vrfy(u,s):
checking if an element s belongs to the set represented by u.
Secret Sharing. Secret sharing enables a secret to be shared
among L parties. We denote x(i) as the additive share of a
secret x ∈ Zp to party i such that x = ∑

L
i=1 x(i)(mod p).

Bit Operations. We denote ⊕ and ⊗ as the bit-wise XOR
and AND operations, respectively. x ≪ t and x ≫ t denote
left-shift and right-shit operations by t bits of value x.
Table 2 summarizes the symbols and notation in our scheme.

2.1 Distributed Point Function
Distributed Point Function (DPF) [14,15,41] permits L parties
to jointly evaluate a point function. For a,b∈ {0,1}∗, let Pa,b :
{0,1}|a|→{0,1}|b| s.t. Pa,b(a) = b and Pa,b(a′) = 0|b| ∀ a′ ̸=
a. A DPF scheme contains the following algorithms.

L Number of parties (servers)
m Number of columns of index (BF parameter)
K Number of retrieved columns (BF parameter)
N Number of rows of index (Number of documents)
ns Search output volume bound
w Writer identifier

stw State of writer w
EIDXw Encrypted index of writer w
PTknw Private token of writer w
STknw Shared token of writer w

Pi Party (server) i
x(i) Secret share of x owned by Pi

Σ Public-key encryption
e Rounding error of KH-PRF
z Number of reserved bits for accumulated error

π/π−1 Permutation/Permutation inverse
≪ /≫ Bitwise left/right shift operator

⟳ Circular shift right operator
x+/x− x+ = x+1, x− = x−1

[x] {1, . . . ,n}
⌈x⌉,⌊x⌋ Round up/down of x

Table 2: Summary of notation

• (k(1), · · · ,k(L))← DPF.Gen(1λ,a,b): Given security pa-
rameter λ, and values a,b ∈ {0,1}∗, it outputs L keys
k(1), · · · ,k(L) ∈ K .

• y(ℓ)← DPF.Eval(k(ℓ),x): Given a key k(ℓ) ∈ K and x ∈
{0,1}|a|, it outputs y(ℓ) as the share of Pa,b(x).
DPF can be used to realize Private Information Retrieval

(PIR) on a database B = (b1,b2, . . . ,bm). The client creates L
keys (k(1), . . . ,k(L))← DPF.Gen(1λ, j,1), j ∈ [m], for L par-
ties, k(1), . . . ,k(L) ∈ {0,1}n (n = O(λ logm) for L = 2, or n =
O(λ
√

m) for L≥ 3) and k(ℓ) is sent to party Pℓ ∈ {P1, . . . ,PL}.
Each party Pℓ returns r(ℓ)← ∑

m
i=1DPF.Eval(k

(ℓ), i)×bi and
the client reconstructs the retrieved item b j← ∑

L
ℓ=1 r(ℓ).

2.2 Key-Homomorphic PRF (KH-PRF)
KH-PRF [11] enables distributed evaluation of a PRF function
F∗ : K ×X → Y such that (K ,∗) and (Y ,•) are groups and
for every k1,k2 ∈K , F∗(k1∗k2,x)=F∗(k1,x)•F∗(k2,x). An
L-party KH-PRF scheme contains the following algorithms.
• k← KH-PRF.Gen(1λ): Given a security parameter λ, it out-

puts a secret key k ∈K .

• (k(1), . . . ,k(L))← KH-PRF.Share(k): Given a key k ∈ K ,
it outputs L keys k(1), . . . ,k(L) ∈K s.t. k(1) ∗ · · · ∗k(L) = k.

• y← KH-PRF.Eval(k,s): Given a key k ∈ K and a seed
s ∈ {0,1}∗, it outputs the evaluation y = F∗(k,s) ∈ Y .
We extend the 2-party (almost) KH-PRF scheme based

on Learning with Rounding (LWR) under Random Oracle
Model (ROM) by Boneh et al. [11] into L-party setting. Let
H2 : {0,1}∗→ Zn

q be a hash function modeled as a random
oracle. The KH-PRF function F∗ : Zn

q×{0,1}∗→ Zp is de-
fined as F∗(k,s) =

⌊
⟨H2(s),k⟩

⌋
p , where k(1)+ · · ·+k(L) = k,

F∗ is an almost key homomorphic such that F∗(k,s) =
e+∑

L
ℓ=1 F∗(k(ℓ),s) (mod p) where e ∈ {0, . . . ,L}.

2584 33rd USENIX Security Symposium USENIX Association

2.3 Linear Group Action
Let (G,◦,1) be a group. A linear group action [6] of G on Zn

p
is a function ψ : Zn

p×G→ Zn
p satisfying:

ψ(x,1) = x ∀x ∈ Zn
p

ψ(x,g1 ◦g2) = ψ(ψ(x,g1),g2) ∀x ∈ Zn
p,g1,g2 ∈G

ψ(x+y,g) = ψ(x,g)+ψ(y,g) ∀x,y ∈ Zn
p,g ∈G

rψ(x,g) = ψ(rx,g) ∀r ∈ Zp,x ∈ Zn
p,g ∈G

Shuffle. We define ψ : Zn
p×G→ Zn

p as follows:
ψ(x,π)← π(x)

where π is a permutation. For example, with n = 4, π =
(2,1,4,3) and x = (5,6,7,8), ψ(x,π) = π(x) = (6,5,8,7).

Chase et al. [21] proposed a two-party Secret-shared Shuf-
fle (TSS) protocol, which permits each party to obtain the
share of π(x). TSS consists of the following PPT algorithms.
• (∆∆∆;a,b)← TSS.ShrTrns(π;1λ): Given a permutation π for

n elements from P1, and a security parameter λ from P2, it
outputs ∆∆∆ = b−π(a) ∈ Zn

p to P1 and a,b ∈ Zn
p to P2.

• (x′;b)← TSS.Shffl(π,∆∆∆;x,a,b): Given a permutation π

and its corresponding ∆∆∆ from P1, a set x and masks a,b from
P2, it outputs x′ = π(x)+b ∈ Zn

p as a masked permutation
of x to P1, and the mask value b to P2.

Circular Shift. Let G be a group modulo n. We define ψ :
Zn

p×G→ Zn
p as follows:

ψ(x,g)← (x ⟳ g)
where ⟳ denotes circular shift operator, which rotates vector
x to the right by g positions. For example, with x = (1,2,3,4)
and g = 1, we have ψ(x,g) = x ⟳ g = (4,1,2,3).

3 Models

System Model. Our system consists of an honest reader,
nw independent writers, and L servers. WLOG, we identify
each writer as a member of [nw], i.e., W = [nw]. Each writer
w ∈W owns a collection of N documents (each identified
as a member of [N]) and desires to share the collection with
the reader. The reader would like to perform an encrypted
keyword search over the collections of a writer subset W ′ ⊆
W . Also, the writer can revoke the permission of the reader
if needed. The reader and writers are independent and they do
not communicate directly with each other in any operations
(i.e., search, update, revoke) after system setup.

Definition 1 (MUSES). A MUSES scheme is a tuple of
PPT algorithms defined as follows:
• (pk,sk)← RSetup(1λ): Given a security parameter λ, it

outputs a public and private key pair (pk, sk).

• (EIDXw,stw,PTknw,STknw)←WSetup(1λ,w,pk):Given
a security parameter λ, a writer identifier w, the reader’s
public key pk, it outputs an encrypted index EIDXw, a state
stw, a private token PTknw, and a shared token STknw
encrypted under pk.

• s← SearchToken(kw,W ′): Given a keyword kw, and a
subset of writers W ′, it outputs a search token s.

• O← Search(s,sk,{(EIDXw,STknw,stw)}w∈[nw]): Given a
search token s, the reader’s private key sk, encrypted search
indices EIDXw, shared tokens STknw, and states stw of writ-
ers w ∈ [nw], it outputs the search result O.

• uw← UpdateToken(Vu,u,w,PTknw,stw): Given an up-
dated document identifier u, a set of updated keywords Vu,
a writer identifier w, the writer’s private token PTknw and
state stw, it outputs an update token uw.

• (EIDX′w,st
′
w)← Update(uw,EIDXw,stw): Given an up-

date token uw, an encrypted index EIDXw and a state stw
of writer w, it outputs updated index EIDX′w and state st′w.

• (EIDX′w, PTkn′w)← RvkPrm(w, PTknw, EIDXw, stw):
Given a writer identifier w, the writer’s private token
PTknw, the writer’s index EIDXw and state stw, it outputs
an updated index EIDX′w and updated token PTkn′w.

The correctness of MUSES is presented in our full version
[57].
Threat and Security Models. We assume the adversary
can corrupt up to L− 1 servers and any number of writers.
We assume the adversary is semi-honest, meaning that it is
curious about the query of other honest writers/reader but
follows the protocols faithfully.

We concentrate on the security of the search index and
its related operations. Informally speaking, MUSES aims to
achieve standard SE security properties including semantic
security and forward and backward privacy. More importantly,
in MUSES, we strive to conceal all pattern leakages during
search, including search pattern sp, result pattern rp, and vol-
ume pattern sv. Due to space constraints, we present the for-
mal definitions of all these properties in our full version [57].
Document access leakage. In this paper, we focus only on
the security of the search index. Accessing document content
from the collection after the search is out-of-scope. Sealing
document access leakage is an independent study. Some obliv-
ious file systems (e.g., [22, 23, 60, 62]) can be used orthogo-
nally with our scheme for system-wide end-to-end security.

4 Our Proposed Scheme

4.1 Data Structures

Search Index. In MUSES, each writer w ∈W has an in-
dependent index for keyword-document representation. We
use a probabilistic data structure (i.e., BF) to create a com-
pressed index for each writer. Suppose there are N docu-
ments, the writer extracts a set of unique keywords Vu for
each document u ∈ [N] and computes its BF representation
as vu ← BF.Gen(Vu) ∈ {0,1}m. The search index contains
N BF vectors, which is interpreted as a N×m binary matrix

USENIX Association 33rd USENIX Security Symposium 2585

RSetup(1λ):
1. (pk,sk)← Σ.Gen(1λ)
2. return (pk,sk)

WSetup(1λ,w,pk):
1. For v = 1 to m

(a) rw,v← KH-PRF.Gen(1λ)
(b) STknw,v← Σ.Enc(pk,rw,v)

2. stw← (stw,1,stw,2, . . . ,stw,N), where stw,u← 0, for u ∈ [N]
3. EIDXw[u,v]← F∗(rw,v,u||stw,u), for u ∈ [N] and v ∈ [m]
4. PTknw← (rw,1,rw,2, . . . ,rw,m)
5. STknw← (STknw,1,STknw,2, . . . ,STknw,m)
6. return (EIDXw,stw,PTknw,STknw)

Figure 1: MUSES setup.

IDXw = [v1,v2, . . . ,vN] ∈ {0,1}N×m. Searching a keyword
incurs checking BF membership by reading K columns in
IDXw, where K is the BF parameter. Updating a document u
recreates a new BF representation of the updated keywords
and overwrites the corresponding row IDXw[u,∗].
IDXw is encrypted for confidentiality. For reader efficiency,

the writer encrypts her index in a way that the decryption can
be delegated to the servers during search. MUSES employs
KH-PRF function F∗ for such delegation as follows.

First, the writer w interprets the index as a matrix IDXw =[
c1 c2 . . . cm

]
∈ {0,1}N×m, where cv ∈ {0,1}N ∀v ∈

[m]. For each column v ∈ [m], the writer generates a KH-
PRF key as rv ← KH-PRF.Gen(1λ) ∈ Zn

q for column-wise
encryption. Since F∗ is an almost KH-PRF, there exists a
small error e (§2.2) during the KH-PRF evaluation. Thus, it is
necessary to “reserve” several bits for the error in the column
data before being encrypted with KH-PRF so that such error
can be “ruled out” after KH-PRF decryption. Moreover, since
the servers also perform secure addition of K columns after
KH-PRF evaluations for BF membership verification, we need
to reserve enough space for the accumulated error. Let z =
⌈log2(e ·K)⌉ be the number of bits for the accumulated error
when adding K columns encrypted by KH-PRF together. For
each u ∈ [N], the writer encrypts the element cv[u] as

d̂v[u]← (cv[u]≪ z)+F∗(rv,u || stw,u) (mod p) (1)
where stw,u is the update state of document u (initial-
ized with 0). The final encrypted index is EIDXw =[
d̂1 d̂2 . . . d̂m

]
∈ ZN×m

p , where d̂v ∈ ZN
p ∀v ∈ [m].

Auxiliary Information. In MUSES, each writer w’s index
EIDXw is associated with three auxiliary components:

• Private token PTknw: It contains KH-PRF keys rv that are
used to encrypt the search index.

• Shared token STknw: It contains information for the reader
to search on EIDXw, which are the KH-PRF keys
rv, encrypted under the reader’s public key. Specifi-
cally, STknw = (STknw,1, . . . ,STknw,m), where STknw,v←
Σ.Enc(pk,rv) for v ∈ [m] and (pk,sk)← Σ.Gen(1λ) is the
reader’s public/private keys.

• Update state stw: It contains public information concate-

nated with document identifier as seed value for KH-PRF
evaluation. Specifically, stw = (stw,1, . . . ,stw,N), where stw,u
is the counter value (initialized with 0) for document u in-
cremented after each update on that document happens.

Setup. Figure 1 presents the setup procedures as follows.

• Reader: It executes RSetup algorithm to generate a pub-
lic/private key pair (pk,sk) and broadcasts pk to all writers.

• Writer: Each writer w executes WSetup algorithm on
reader’s public key pk to generate four components: the
encrypted index EIDXw, a private token PTknw, a shared
token STknw, and an update state stw. The writer first gener-
ates m KH-PRF keys (rw,1, . . . ,rw,m) to encrypt m columns
of the search index (step 1(a)). These KH-PRF keys are
stored as the private token PTknw by the writer and also
encrypted under the reader’s public key pk as shared token
STknw (steps 1(a)–1(b)) to grant search permission to the
reader. The writer initializes a public update state stw as
zero values (step 2). Finally, the writer encrypts an empty
search index cell-by-cell by evaluating KH-PRF function
F∗ with KH-PRF keys rw,v and the seeds formed by row
indices and update counters (step 3). Finally, the writer
sends EIDXw and its auxiliary components (stw, STknw) to
L servers while keeping PTknw private.

4.2 Search Procedure
We present the search protocol of MUSES in Figure 2. To
search for a keyword kw on a writer subset W ′, the reader first
computes its BF representation as column indices (v1, . . . ,vK),
and creates corresponding DPF keys {q(i)1 , . . . , q(i)K }i∈[L]
(SearchToken, steps 1–2), and sends them to L servers, where
each server Pi receives a search token si = (W ′,{q(i)k }k∈[K]).
The servers then execute Search algorithm, which performs
three main operations: (i) partial decryption, (ii) oblivious
counting/padding, and (iii) oblivious shuffle.

4.2.1 Partial decryption

First, each server Pi evaluates DPF on two components of the
writer: the search index EIDX and shared token STkn. The
former is to privately retrieve (d̂(i)

v1 , . . . , d̂
(i)
vK) as the additive

shares of K requested columns in EIDX, while the latter is to
privately retrieve (STkn(i)v1 , . . . ,STkn

(i)
vK) as the additive shares

of the K corresponding shared tokens (step 4).
The servers send the shares of the shared tokens to the

reader to open the secret keys rvk (for k ∈ [K]) (steps 5(a)–
5(b)). The reader then delegates the (partial) decryption to the
servers by creating (r(1)vk , . . . ,r(L)vk) as the KH-PRF (additive)
shares of each rvk (step 5(c)), and distributes each r(i)vk to each
server Pi (step 6). Each server performs KH-PRF evaluation
to obtain the shares of the decrypted columns (step 7(a)) as:

d̃(i)
vk [u] = d̂(i)

vk [u]−F∗(r(i)vk ,u || stu) (mod p) (2)

2586 33rd USENIX Security Symposium USENIX Association

SearchToken(kw,W ′):
1. For each k ∈ [K]:

(a) vk ← Hk(kw)

(b) (q(1)k , . . . ,q(L)k)←DPF.Gen(1λ,vk,1)

2. si← (W ′,{q(i)k }k∈[K]) for each i ∈ [L]
3. return s← (s1, . . . ,sL)

Search(s,sk,{(EIDXw,STknw,stw)}w∈[nw]):

Let s = (W ′,{q(i)k }k∈[K]). For each writer w ∈W ′, repeat the following
process on its components EIDX= EIDXw, STkn= STknw, st= stw:
4. For each k ∈ [K], each server Pi locally computes:

(a) d̂(i)
vk ← ∑

m
v=1 DPF.Eval(q(i)k ,v)×EIDX[∗,v]

(b) STkn
(i)
vk ← ∑

m
v=1 DPF.Eval(q(i)k ,v)×STknv

(c) Send STkn
(i)
vk to the reader.

5. For each k ∈ [K], the reader computes:

(a) STknvk ← ∑
L
i=1 STkn

(i)
vk (mod p)

(b) rvk ← Σ.Dec(sk,STknvk)

(c) (r(1)vk , . . . ,r(L)vk)← KH-PRF.Share(rvk)

6. The reader sends {r(i)vk }k∈[K] to server Pi for each i ∈ [L]
7. For each u ∈ [N], each server Pi locally computes:

(a) d̃(i)
vk [u]← d̂(i)

vk [u]−F∗(r(i)vk ,u || stu) (mod p) for k ∈ K

(b) d(i)[u]← ∑
K
k=1 d̃(i)

vk [u] (mod p)
8. All servers jointly execute ΠLOC online protocol on shares d(i) and obtain

(s(i),d′(i)). Each Pi sends s(i) to the reader
9. The reader computes:

(a) s← ∑
L
i=1 s(i) (mod p)

(b) Generates padding vector p = (1ns−s || 0s)

(c) Secret shares p as p(i) $← Zns
p such that ∑

L
i=1 p(i) = p

(d) Sends p(i) to each server Pi ∈ {P1, . . . ,PL}.
10. Every Pi concatenates o(i) = (d′(i)||p(i))
11. All servers jointly execute ΠLOS online protocol on shares o(i), which

outputs permutation πi to each Pi ∈ {P1, . . . ,PL−1} and shuffled vec-
tor ô to PL. PL sends O = {u : ô[u] = 1} to the reader, and each
Pi ∈ {P1, . . . ,PL−1} sends πi to the reader

12. return O ′ = {u′ : u′ ≤ N∧u′ = π
−1
1 (. . .(π−1

L−1(u)) . . .)∀u ∈ O}

Figure 2: MUSES search.

for each u∈ [N] and k∈ [K], where sti,u is the (update) counter
of document u. Finally, each server Pi aggregates the shares
of K decrypted columns (step 7(b)) as d(i) ← ∑

K
k=1 d̃(i)

vk ∈
ZN

p to obtain the share of the search result according to BF
membership verification. Specifically, keyword kw appears
in document u of the writer iff

(
∑i d(i)[u]

)
≫ z = K, where

z = ⌈log2(e ·K)⌉ is the reserved space for accumulated error
when aggregating K KH-PRF-evaluated columns together by
Eq. (1). Since broadcasting d(i) permits the servers to learn the
plain search result leading to result/volume pattern leakages,
the next steps are to perform oblivious padding and oblivious
shuffle on the shares d(i) before opening the search result.

4.2.2 Oblivious padding

To seal the volume leakage, we perform oblivious padding so
that the search result always returns ns document identifiers.
We first count s as the number of occurrences of K in the
aggregated column d (Figure 2, step 8), and then create a
padding vector containing (ns− s) elements of value K.

Protocol 1. ΠLOC – Multi-party Oblivious Count Protocol

Preprocessing:
Input: Security parameter λ and value to be counted K
Output: Each Pi obtains shares r(i) ∈ ZK+ ,b(i) ∈ ZK+

p s.t. r = ∑
L
i=1 r(i),

b = ∑
L
i=1 b(i) is a unit vector with b[r] = 1

1. Every Pi sets r(i) $← ZK+ ,π(i)← [K+]⟳ r(i)

2. For each Pi ∈ {P1, . . . ,PL−1}, P j ∈ {Pi+1, . . . ,PL}:
(a) P j ↔ Pi: (∆∆∆

(j)
i ;a(i)j ,b(i)

j)← TSS.ShrTrns(π(j);1λ)

3. Every Pi sends ∆∆∆
′(j)
i ← a(i)j+1−b(i)

j to each P j ∈ {Pi+1, . . . ,PL−1}
4. P1 sets ∆∆∆

(1) ← a(1)2 . For i = 2 to L− 1, Pi sets ∆∆∆
(i) ← ∑

i−1
j=1 ∆∆∆

(i)
j +

∑
ℓ−1
i=1 ∆∆∆

′(i)
j +a(i)i+1. PL sets ∆∆∆

(L)← ∑
L−1
j=1 ∆∆∆

(L)
j

5. P1 initializes e←{0}K+
, sets e[0] = 1 and o(1)← e

6. Each Pi ∈ {P1, . . . ,PL−1} sets b(i) ← −b(i)
L and sends o(i+1) ←

π(i)(o(i))+∆∆∆
(i) to Pi+1

7. PL sets b(L)← π(L)(o(L))+∆∆∆
(L)

Online phase:
Input: Each Pi inputs d(i) ∈ ZN

p as share of aggregated column with z-lower

bit noise, N preprocessed shares {(r(i)u ,b(i)
u)}u∈[N]

Output: Each Pi obtains shares s(i) ∈ Zp, d′(i) ∈ ZN
p s.t. ∑

L
i=1 d′(i) = d′,

∑
L
i=1 s(i) = s, d′[u] = ((∑L

i=1 d(i)[u]≫ z) ?
= K), s = ∑

N
u=1 d′[u]

1. For each u ∈ [N] in parallel:
(a) Every Pi computes r̂(i)u ←−r(i)u (mod K+) and sends q(i)u ← (r̂(i)u ≪

z)+d(i)[u] (mod p) to all other parties
(b) Every Pi computes qu←

(
∑

L
j=1 q(j)

u
)
≫ z (mod K+), b′(i)u ← b(i)

u ⟳

qu, and d′(i)[u]← b′(i)u [K]

2. Every Pi computes s(i)← ∑
N
u=1 b′(i)u [K]

Oblivious count protocol. Given a vector v ∈ ZN
m, counting

how many elements in v equal a specific value x ∈ Zm can
be done by transforming each v[u] to a one-hot vector bu ∈
{0,1}m, where bu[v[u]] = 1, and computing ∑

N
u=1 bu[x]. With

this unit-vectorization trick, we design an online/offline L-
party oblivious counting algorithm (Protocol 1) to compute s
(i.e., number of elements in the noise-free aggregated column
v ∈ ZN

m equal x) in arithmetic secret-sharing. We present a toy
example of our protocol in Figure 3.

Suppose p = 2α, K+ = K + 1 = 2α′ for some integers
α > α′ and s < p (e.g., p = 8,K = 1 in Figure 3). In the
preprocessing phase (Figure 3a), we precompute the share
of N random roulette pairs (bu,ru), where bu ∈ {0,1}K+

is a
random unit vector that bu[ru] = 1, and ru ∈ ZK+ is a random
circular shift. Let b(i)

u ∈ ZK+

p and r(i)u ∈ ZK+ be the share of
bu and ru, respectively. In the online phase (Figure 3b), the
share of s is computed by masking each element d[u] with r̂(i)u ,
where r̂(i)u ←−r(i)u (mod K+) is the complement of circular
shift value r(i)u (step 6), followed by opening the masked data
(step 7), and unmasking with the unit vector bu (step 8).

As z least significant bits (LSBs) of d[u] contain KH-PRF
error (Eq. (1)), we left-shift the circular shift value r̂(i)u by z bits
to only mask the actual data in d[u] as q(i)u = d(i)[u]+ r̂(i)u ·2z ∈
Zp. We then open and remove z LSBs of the masked data

as qu =
(

∑
L
i=1 q(i)u

)
≫ z ∈ ZK+ . Finally, the share of s is

USENIX Association 33rd USENIX Security Symposium 2587

,

,
Share

Translation
Sha

re

Tra
ns

lat
ion

randomly generated

,

Share
Translation

-unit vector

: rotated by

randomly generated

randomly generated

1

2

2

2

3 4 5

(a) Preprocessing (ΠLOC.Prep)

Input: Input vector

•

(Optional) open

: unit-vectorized of

• : 0-th unit vector
 rotated by ,

Goal: count # 1's in

: precomputed values
: shares of

 Open

6

6

7

6

8 8

8

9

(b) Online phase (ΠLOC.Cnt)

Figure 3: A numerical example of ΠLOC with p = 8 and K = 1.

computed by unmasking the opened data with the share of bu

as s(i) = ∑
N
u=1 b′(i)u [K] ∈ Zp, where b′(i)u = b(i)

u ⟳ qu (step 8).
Moreover, as d[u]≫ z contains aggregated values from 1 to
K, it may reveal information about the search pattern when
opened in the next search operation (i.e., oblivious shuffle).
Meanwhile, the search only needs the information whether
d[u]≫ z ?

= K, which is available in b′u[K]. Thus, our online
protocol also outputs the shares of b′u[K] in the form of shared
vectors d′(i)[u] = b′u[K] for the next processing.

We now show how to compute a roulette pair (b,r) in the
offline phase. Our idea is to employ the two-party shuffle
in [21] and extend it to L-party setting. As b[r] = 1, it can
be written as linear group operations as b = π(L)(. . .(π(1)(e)),
where e ∈ ZK+

2 is the unit-vector that e[0] = 1, π(i) = [K +

1] ⟳ r(i) is a random circular shift permutation with r(i) $←
ZK+ and r = ∑

L
i=1 r(i) ∈ ZK+ . Thus, L shares of b can be

set as b(i) $← ZK+

p for i ∈ [L−] and b(L) = π(L)(. . .(π(1)(e))−
∑

L−1
i=1 b(i). That means L−1 parties Pi ∈ {P1, . . . ,PL−1} can

independently generate random circular shift and vector as the
shares r(i) and b(i), respectively, and interact with each other to
help party PL obtain b(L) = π(L)(. . .(π(1)(e))−∑

L−1
i=1 b(i) with

its chosen random circular shift permutation π(L). Specifically,
each party Pi computes a translation function ∆∆∆

(i) such that
π
(L)(. . .(π(2)(∆∆∆

(1))+∆∆∆
(2)) . . .)+∆∆∆

(L) =

π
(L)(. . .(π(2)(π(1)(e))) . . .)−

L−1

∑
i=1

b(i)

The idea is to execute the two-party share translation protocol
in [21] between (Pi,P j) for i, j ∈ [L] and i < j (with circular
permutation π(j) chosen by P j, and random vectors a(i)j , b(i)

j

chosen by Pi) to generate ∆∆∆
(j)
i = b(i)

j −π(j)(a(i)j) for P j (step
1 in Figure 3a). Then, each Pi, for Pi ∈ {P1, . . . ,P j−1}, sends
∆∆∆
′(j)
i ← a(i)j+1− b(i)

j to P j, for P j ∈ {Pi+1, . . . ,PL−1}. From

∆∆∆
(i)
j and ∆∆∆

′(i)
j , each Pi ∈ {P1, . . . ,PL} can compute ∆∆∆

(i) =

xi+1−π(i)(xi) (step 2), where

xi =

{
∑

L−1
j=1 b(j)

L if i = L+1

∑
i−1
j=1 a(j)

i otherwise

Next, P1 initializes the unit-vector e and sends o(2) ←
π(1)(e)+∆∆∆

(1) = π(1)(e)+a(1)2 to P2 (step 3), who then com-
putes o(3)← π(2)(o(2))+∆∆∆

(2) = π(2)(π(1)(e))+∑
2
i=1 a(i)3 (step

4) and forwards it to P3, and so on until the final party PL

who receives o(L) = π(L−1)(. . .(π(1)(e)) . . .)+∑
L−1
i=1 a(i)L from

PL−1. Then, PL computes the share as b(L) ← π(L)(o(L))+
∆∆∆
(L) = π(L)(. . .(π(1)(e)) . . .)+∑

L−1
i=1 b(i)

L (step 5).
We argue correctness/security of ΠLOC in our full version

[57].
Oblivious padding. Once the count s in the aggregated
column is computed, the oblivious padding can be easily
achieved. All servers send s(i) to the reader to open s =

∑
L
i=1 s(i) (Figure 2, step 9(a)). The reader generates a padding

vector p ∈ {0,1}ns containing ns− s elements of 1 and secret-
shares it with L servers (steps 9(b)-9(d)). The servers form a
concatenated vector from p and the vector d′ output from the
ΠLOC online protocol as o = (d′||p) (step 10). To completely
seal pattern leakages, o must be shuffled before opening to
obtain the search result. In the next section, we present an
oblivious shuffle protocol to shuffle o in L-party arithmetic
secret-sharing.

4.2.3 Oblivious shuffle

We construct a new L-party random shuffle protocol to shuffle
vector elements in arithmetic secret sharing.
L-party secret-shared shuffle. Protocol 2 presents our L-
party shuffle ΠLOS scheme. Similar to ΠLOC, ΠLOS is ex-
tended from the two-party shuffle in [21] to work with L-

2588 33rd USENIX Security Symposium USENIX Association

Protocol 2. ΠLOS – Multi-party Oblivious Shuffle Protocol

Preprocessing:
Input: Security parameter λ and size n
Output: Preprocessing values, including (π(1),∆∆∆1) for P1, (π(i),∆∆∆i,a

(1)
i) for

Pi, with i = 2, . . . ,L−1, and a(1)L ,b(L−1)
L for PL

1. For each Pi ∈ {P1, . . . ,PL−1}, P j ∈ {Pi+1, . . . ,PL}:
(a) Pi generates a random π(i) for n elements
(b) Pi↔ P j: (∆∆∆

(i)
j ;a(j)

i ,b(j)
i)← TSS.ShrTrns(π(i);1λ)

2. Each Pi ∈ {P3, . . . ,PL} sends ∆∆∆
′(j)
i ← b(i)

j−1 − a(i)j to each P j ∈
{P2, . . . ,Pi−1}. Each Pi ∈ {P1, . . . ,PL−1} computes ∆∆∆

(i)←∑
L
j=i+1 ∆∆∆

(i)
j .

Each Pi ∈ {P2, . . . ,PL} computes ∆∆∆
(i)← ∆∆∆

(i)−π(i)(∑L
j=i+1 ∆∆∆

′(i)
j +b(i)

i−1)

Online phase:
Input: Secret shares d(i) and preprocessing values including (π(1),∆∆∆(1)) for
P1, (π(i),∆∆∆(i),a(i)1) for Pi, with i = 2, . . . ,L−1, and a(L)1 ,b(L)

L−1 for PL

Output: π(i) for each Pi ∈ {P1, . . . ,PL−1}, shuffled vector r for PL

1. Each Pi ∈ {P2, . . . ,PL} sends z(i)← d(i)+a(i)1 to P1

2. P1 computes o(1)← d(1)+∑
L
i=2 z(i)

3. Each Pi ∈ {P1, . . . ,PL−1} sends o(i+1)← π(i)(o(i))+∆∆∆
(i) to Pi+1

4. PL computes r← o(L)−b(L)
L−1

party and arithmetic shares. However, unlike ΠLOC or prior
works [33], the goal of ΠLOS is to output the shuffled vector
directly, instead of its shares which may cost an additional
communication round for opening. To achieve this, we de-
sign a new preprocessing protocol that permits all parties
to compute precomputed materials for direct online shuffle.
Specifically, we precompute translation functions for every
Pi (except PL) with its chosen random permutation π(i) as
∆∆∆
(i) = xi+1−π(i)(xi) such that

xi =

{
∑

L
j=i+1 a(j)

i , if i = 1

∑
L
j=i b(j)

i−1, otherwise

where a(j)
i ,b(j)

i are random vectors chosen by P j.
With these precomputed materials, our online protocol

can output the shuffled vector directly as follows. Let
d(i) be the share of the vector to be shuffled. Each Pi ∈
{P2, . . . ,PL} sends its masked share z(i) ← d(i) + a(i)1 to
P1. P1 computes o(1) ← d(1) + ∑

L
i=2 z(i) sends o(2) ←

π(1)(o(1)) +∆∆∆
(1) = π(1)(d) +∑

L
i=2 b(i)

1 to P2, which in turn
computes o(3)← π(2)(o(2))+∆∆∆

(2) = π(2)(π(1)(d))+∑
L
i=3 b(i)

2
and forwards it to P3 and so on until PL receives o(L) =
π(L−1)(. . .(π(1)(d)) . . .)+b(L)

L−1 from PL−1. As PL holds b(L)
L−1,

it can compute r← o(L)−b(L)
L−1 = π(L−1)(. . .(π(1)(d))).

To generate precomputed materials, we execute two-party
share translation scheme in [21] between (Pi,P j) for i, j ∈
[L] and i < j (with random permutation π(i) chosen by Pi,
and random vectors a(j)

i , b(j)
i chosen by P j) to compute

∆∆∆
(i)
j = b(j)

i −π(i)(a(j)
i) for Pi. Then, each Pi ∈ {P2, . . . ,PL−1}

receives ∆∆∆
′(i)
j = b(j)

i−1− a(j)
i from each P j ∈ {Pi+1, . . . ,PL}.

From ∆∆∆
(i)
j and ∆∆∆

′(i)
j , Pi ∈ {P1, . . . ,PL−1} can compute ∆∆∆

(i).
We argue correctness/security of ΠLOS in our full version

RvkPrm(w,PTknw,EIDXw,stw):
1. Writer w:

(a) parse PTknw = (rw,1,rw,2, . . . ,rw,m)
(b) For v = 1 to m

i. r′w,v← KH-PRF.Gen(1λ)

ii. (r(1)w,v, . . . ,r
(L)
w,v)← KH-PRF.Share(rw,v)

iii. (r′(1)w,v , . . . ,r
′(L)
w,v)← KH-PRF.Share(r′w,v)

(c) PTkn′w← (r′w,1,r
′
w,2, . . . ,r

′
w,m)

2. Writer w→ Server Pi ∈ {P1, . . . ,PL}: {r
(i)
w,v, r′(i)w,v}v∈[m]

3. Server Pi ∈ {P1, . . . ,PL}:
(a) For u = 1 to N, v = 1 to m do

i. xu,v
$← Zp, M(i)[u,v]← xu,v ≪ z

ii. T(i)
1 [u,v]←M(i)[u,v]−F∗(r(i)w,v,u||stw,u)+maxe (mod p)

iii. T(i)
2 [u,v]←−M(i)[u,v]+F∗(r′(i)w,v,u||stw,u) (mod p)

4. Server Pi→ Server P j: T(i)
1 ,T(i)

2 , for Pi,P j ∈ {P1, . . . ,PL} and Pi ̸= P j

5. Server Pi ∈ {P1, . . . ,PL}:
(a) For u = 1 to N, v = 1 to m do

i. T′[u,v]← EIDXw[u,v]+∑
L
j=1 T(j)

1 [u,v]
ii. T̂[u,v]← ((T′[u,v]≫ z)≪ z)

iii. EIDX′w[u,v]← T̂[u,v]+∑
L
j=1 T(j)

2 [u,v]+maxe (mod p)

6. return (EIDX′w,PTkn
′
w)

Figure 4: MUSES permission revocation.

[57].
Obtaining final search result. Once the concatenated search
vector o is randomly shuffled (Figure 2, step 11) and opened to
PL as ô, it can extract ns indices u such that ô[u] = 1 and send
them to the reader. All other servers send their permutations
to the reader. The reader obtains the final search result by
applying the permutation inverses on indices from PL and
removing padded indices (step 12).

4.3 Search Permission Revocation
MUSES permits a writer to revoke access permission of the
reader on her search index. The idea is to re-encrypt the
writer’s index with refreshed (column) KH-PRF keys un-
known to the reader. Figure 4 presents our revocation protocol,
where the re-encryption operation is delegated securely to the
servers for writer efficiency. Its high-level idea is as follows.

To re-encrypt EIDXw, the writer w first parses the current se-
cret column keys rw,v, for v∈ [m] (step 1(a)) and generates new
secret column keys r′w,v (step 1(b).i). Next, the writer creates

secret-shares of these keys as (r(1)w,v, . . . ,r
(L)
w,v), (r

′(1)
w,v , . . . ,r

′(L)
w,v)

(steps 1(b).ii–iii), then updates private token (step 1(c)) and
sends {r(i)w,v,r

′(i)
w,v}v∈[m] to servers Pi ∈ {P1, . . . ,PL} (step 2).

Each server Pi computes T(i)
1 and T(i)

2 , where T(i)
1 is the

masked component to remove the shared encryption com-
puted by the secret-shared key r(i)w,v, and T(i)

2 is the compo-
nent to unmask the value M(i) added by T(i)

1 and add the
shared encryption computed by the new secret-shared key
r′(i)w,v (step 3(a)). The server Pi then distributes T(i)

1 and T(i)
2

to other servers (step 4). Next, each server Pi obtains the

USENIX Association 33rd USENIX Security Symposium 2589

UpdateToken(Vu,u,w,PTknw,stw): ▷ Executed by writer w
1. parse PTknw = (rw,1,rw,2, . . . ,rw,m)

2. u←{0}m, u′←{0}m

3. For kw j ∈ Vu, k = 1 to K: cid j,k ← Hk(kw j), u[cid j,k]← 1
4. For v ∈ [m]: u′[v]← (u[v]≪ z)+F∗(rw,v,u||(stw,u +1)) (mod p)
5. return uw← (w,u,u′)

Update(uw,EIDXw,stw): ▷ Executed by each server Pi ∈ {P1, . . . ,PL}:
6. parse uw = (w,u,u′)
7. EIDX′w[u,∗]← u′, st′w,u← stw,u +1

8. return (EIDX′w, st′w)

Figure 5: MUSES document update.

masked value with error denoted as T′ (step 5(a).i), where
T′[u,v] = (IDX[u,v] ≪ z)+∑

L
j=1 M(j)[u,v] + eu,v. The ran-

dom mask M(j) generated by each server P j is to hide the
plaintext data (IDX[u,v]≪ z) when the servers remove the
current encryption by adding EIDX with ∑

L
j=1 T(j)

1 to obtain
T′. By clearing z lower bits of each T′[u,v], the error part eu,v
can be removed, and the servers now hold the masked plain-
text value T̂[u,v] (step 5(a).ii). To retrieve the final EIDX′w
encrypted by the new secret keys, each server Pi computes
EIDX′w[u,v] based on T̂[u,v] and ∑

L
j=1 T(j)

2 [u,v] (step 5(a).iii).
The value maxe = L is the max error when using LWR-based
KH-PRF. It is necessary for decryption in keyword search
later. Finally, all servers hold the same updated EIDX′w, which
is encrypted with the new column keys.

4.4 Document Update
MUSES supports document update as other bitmap-based dy-
namic encrypted search schemes (e.g., [27, 45]). We present
the update procedure of MUSES in Figure 5. Given an up-
dated document with identifier u and a set of its keywords
Vu, the writer parses KH-PRF keys rw,v, for v ∈ [m], from
its private token PTknw (step 1). The writer computes the
new BF representation u ∈ {0,1}m of the updated document
with input keywords Vu (steps 2–3). The writer encrypts u
with KH-PRF keys and the incremented counter value as
u′[v]← u[v]+F∗(rv,u || (stw,u+1)) (mod p), for each v∈ [m]
(step 4). Finally, the writer sends u= (w,u,u′) as the update
token to the servers to update its search index accordingly as
EIDX′w[u,∗]← u′ and st′w,u← stw,u +1 (steps 6–7).

5 Analysis

Complexity. We analyze the online asymptotic cost of
MUSES. We consider the number of servers (L) and BF pa-
rameters (m,K) as small constants. Let N be the number of
documents. To search for a keyword kw in a writer’s database,
the reader creates a query of size O(K ·λ · τ)=O(λτ), where
τ = O(logm) for L = 2, and τ = O(

√
m) for L≥ 3. For each

writer in W ′, the reader sends shares of KH-PRF keys to
L servers, which costs O(L ·K · n · logq)=O(λ) in total (as
n,q=O(λ) are the LWR parameters of KH-PRF). Let ns be the

bound on the size of the search output. For oblivious padding,
the reader receives secret shares of the count from servers,
then creates secret shares of padding values with communica-
tion and computation costs are O(L ·ns)=O(ns). To obtain the
search result, the reader receives PRP seeds from L−1 servers,
and shuffled output from PL, then re-generates the permuta-
tions π(1), . . . ,π(L−1), and reverses permutations to obtain the
final search output, which incurs O((L−1)λ+ns)=O(λ+ns)
communication and O((L−1) ·N)=O(N) computation cost.
The overall reader’s bandwidth cost is O(λτ+ |W ′|(λ+ns)).

For keyword search, each server incurs (K ·N ·m)=O(N ·m)
modulo additions and multiplications for retrieval. Each
server performs O(K ·N)=O(N) additions for KH-PRF eval-
uation, O(N) additions and circular shift operations for obliv-
ious counting, and O(N +ns) additions for oblivious shuffle.
The overall server computation cost per search on the writer
set W ′ is O(|W ′| · (N ·m+N +ns))=O(|W ′| ·N ·m).

To update a document, the writer creates a new BF rep-
resentation of size O(m) and re-encrypts it. Thus, the total
writer’s bandwidth cost and computation cost per document
update are both O(m). The server does not incur any compu-
tation other than replacing the writer’s components (e.g., a
row in the search index and a state value).

For permission revocation, the writer’s bandwidth and com-
putation cost are similar to the corresponding overhead in
document update, which is O(m) for both. Since the servers
are responsible for updating the encrypted search index with
the new secret keys on behalf of the writer, the computation
and inter-server communication costs are O(N ·m).

For storage, the reader and each writer store a private/secret
key of size O(λ). Although the index is encrypted by O(m)
KH-PRF keys, the writer does not need to store these keys
separately for update/revocation as they can be regenerated
from a (master) secret key using a key derivation function.
The update state st is public and, therefore, can be maintained
at the server and retrieved when needed. For each writer, the
servers store an index of size O(log p ·N ·m)=O(N ·m), a
state st of size O(λ ·N), shared tokens STkn of size O(m ·n ·
logq)=O(m ·λ). The total server cost is O(nw ·N ·m+nw ·λ ·
N +nw ·m ·λ), where nw is the number of writers.

Security. We state the security of MUSES as follows.

Theorem 1. Assuming that the adversary corrupts
at most L − 1 out of the L servers and some writ-
ers, MUSES hides all pattern leakages during search,
achieves LH -adaptive security and forward and back-
ward privacy, where LSetup

H (1λ) = {w,N,m}w∈[nw],
LCorruptWriter

H (w) = {UpdateBy(w)}, LSearch
H (kw,W ′) = { /0},

LUpdate

H (w,u,Vu) = {w,up(u)}, and LRevoke
H (w) = {w},

where W ′ is a writer subset.

We present the proof in our full version [57].

2590 33rd USENIX Security Symposium USENIX Association

6 Experimental Evaluation

Implementation. We fully implemented all our proposed
techniques including MUSES, ΠLOC and ΠLOS in C++ consist-
ing of approximately 2,500 lines of code. We used standard
cryptographic libraries, including OpenSSL [1] for IND-CPA
encryption and hash functions, libsecp256k1 [80] for public-
key encryption in our scheme, and EMP-Toolkit [78] for
IKNP OT protocol. We implemented KH-PRF from scratch.
We used libzeromq [2] for network communication be-
tween servers and client. Our implementation is available
and ready for public release. Our source code is available at:
https://github.com/vt-asaplab/MUSES.

Hardware and network. We used EC2 r5n.4xlarge in-
stances with 8-core Intel Xeon Platinum 8375C CPU @ 2.90
GHz and 128 GB memory as servers. For the user, we used
a laptop with an Intel i7-6820HQ CPU @ 2.7 GHz and 16
GB RAM. The bandwidth between servers is 3 Gbps and the
client bandwidth is 20 Mbps with 10ms RTT.

Dataset. We used the Enron email dataset [3] which includes
about 500K emails of 150 employees. We extracted unique
keywords using the standard tokenization method as described
in [27]. Each email has an average of 73.18 keywords. The av-
erage number of keywords in each writer database is 11,017.

Counterparts and parameters selection. We compared
MUSES with the state-of-the-art schemes including FP-HSE
[76] and DORY [27]. We selected their parameters as follows.

• MUSES: For KH-PRF, we selected q = 213, p = 210, n =
256, l = 2 as suggested in [31] for secure LWR with 126-
bit security, where each KH-PRF key is of 1 KB. We used
SHA-256 for the hash function. We used 256-bit keys for
IND-CPA encryption and PRF/PRG seeds. Each folder in
the dataset is considered as a writer. We created a reader
that can perform a search over all databases for experiments.
To cover the largest folder in the dataset which contains
28,229 documents, we let N = 215 be the bound on the
number of documents. We chose BF parameters such that
N×FP rate < 1. For K = 7, we chose m = 2000 to achieve
FP rate ≈ 3e−5. To evaluate the permission revocation, we
used a varied number of documents N from 210 to 219(≈
500K) with the corresponding m from 1120 to 3120 (with
K = 7) to achieve a low FP rate.

• FP-HSE [76]: We selected the original parameters with a
96-bit security level, where PRFs and keyed hash functions
are instantiated with HMAC-SHA-256, and MNT224 curve for
pairings. Each folder in the dataset is a separate writer.

• DORY [27]. We run experiments with DORY in the semi-
honest setting similar to our MUSES and FP-HSE. We con-
figured BF parameters of DORY similar to our scheme as
DORY uses DPF-based PIR scheme for oblivious search,
and 256-bit keys for IND-CPA encryption, and PRG seeds.

25 50 75 100 125 150
101

102

103

104

105

writers

B
/W

(K
B

)

MUSES DORY

FP-HSE

(a) Reader’s bandwidth

25 50 75 100 125 150
100

101

102

103

104

writers

D
el

ay
(s

)

MUSES DORY

FP-HSE

(b) E2E delay

Figure 6: Keyword search performance (log scale on y-axis).

6.1 Overall Results

6.1.1 Keyword search

Reader’s bandwidth. Figure 6a shows the search bandwidth
between the reader and the servers of our MUSES, DORY and
FP-HSE. In this experiment, we consider L= 2 servers and the
search result size ns = 255. The network overhead in MUSES
increases from 0.4 MB to 2.2 MB, corresponding to the cases
of 25 to 150 writers mostly due to transmitting KH-PRF
key shares. For DORY, it incurs 4.6MB–27.6MB network
overhead per search operation depending on the writer subset
size, which is 11.9×–12.1× larger than the communication
cost of MUSES. FP-HSE incurs the lowest bandwidth as the
reader only sends a search token of 65 B to the server and
receives the results. Although FP-HSE achieves the minimum
bandwidth overhead among all schemes, it suffers from many
vulnerabilities and leaks more information than the others.

Keyword search. Figure 6b illustrates the corresponding
end-to-end delay in keyword search of our scheme under
2 servers and the search result size of 255, in comparison
with DORY and FP-HSE. The latency of all schemes grows
almost linearly to the number of writers. MUSES is about
126.8×–134.7× faster than FP-HSE, and 1.6×–1.7× faster
than DORY. With 25 writers, MUSES takes approximately
2.0s to accomplish a search, and increases to about 11.1s for
150 writers. The overhead of FP-HSE mainly comes from
pairing operations, in which decrypting each encrypted search
token needs two pairing operations, while the overhead of our
scheme mainly stems from KH-PRF evaluation. By contrast,
the overhead of DORY is mostly due to network overhead.

Three factors contributing to the search delay include
reader processing, communication latency, and server pro-
cessing. Specifically, the reader processing is low, which only
takes 13.6ms–69.4ms, while server processing and communi-
cation take 1.8s–10.1s and 0.2s–0.9s, respectively. Their cor-
responding portion in the total delay is 0.6%–0.7%, 90.9%–
91.3%, and 8.0%–8.4% respectively.

USENIX Association 33rd USENIX Security Symposium 2591

https://github.com/vt-asaplab/MUSES

210 212 214 216 218219
102

103

104

105

106

107

documents

B
/W

(K
B

)

MUSES DORY

FP-HSE

(a) Writer’s bandwidth

210 212 214 216 218219
10−2

10−1

100

101

102

103

documents
D

el
ay

(s
)

(b) Writer’s latency

Figure 7: Permission revocation performance (log scale on y-axis).

210 212 214 216 218219
10−1

100

101

102

103

documents

D
el

ay
(s

)

MUSES DORY

FP-HSE

Figure 8: E2E permission revocation delay (log scale on y-axis).

6.1.2 Permission revocation

We evaluate the performance of MUSES when a writer wants
to update secret column keys to revoke search permission of
the reader on her database, and compare it with other schemes.
For DORY and FP-HSE, as these schemes do not offer per-
mission revocation function for a user/writer’s database by
offloading re-encrypting work to the servers as ours, we mea-
sure their latency to re-encrypt a user/writer’s search index on
the user/writer side. For FP-HSE, the writer only re-encrypts
her underlying SSE with another secret key and ignores up-
dating encrypted search tokens to stop sharing her database.
Writer’s bandwidth. Figure 7a demonstrates the bandwidth
cost of all schemes in permission revocation. The bandwidth
overhead of MUSES grows slightly when increasing BF size
(from 1120 to 3120 corresponding to the cases from 1K to
500K documents) as the writer just needs to transmit secret-
shares of KH-PRF keys, together with updated shared tokens
while DORY and FP-HSE requires downloading and upload-
ing the whole search index. MUSES incurs 4.4MB–12.1MB
communication overhead, while DORY produces 0.4MB–
587.0MB, which is 1.5×–48.2× larger than MUSES starting
from 214 documents. The network overhead of FP-HSE is
3.9MB–1833.4MB, which is 2.8×–150.4× larger than our
MUSES. Its cost is high due to the transmission of the search
index back and forth similar to DORY.
Writer’s latency. Figure 7b presents the computing time on
the writer side to re-encrypt her search index. MUSES requires
the minimum amount of time on the writer side, which is
27.9ms–76.1ms for the database sizes increasing from 1K to

5 10 15 20 25 30
100

101

102

103

104

Network bandwidth (Mbps)

D
el

ay
(s

)

MUSES DORY

FP-HSE

(a) Keyword search

5 10 15 20 25 30
100

101

102

103

Network bandwidth (Mbps)

D
el

ay
(s

)

(b) Permission revocation

Figure 9: E2E delay w/ varying bandwidths (log scale on y-axis).

500K documents, where most overhead is for deriving the
current and new secret column keys. By contrast, a user in
DORY takes 0.3s–335.5s to download, re-encrypt the search
index with a new secret key and upload it again, which is
11.9×–4407.6× larger than the computing time of the writer
in MUSES. FP-HSE incurs longer latency on the writer side
due to its larger search index size, where it takes 1.6s–734.3s,
corresponding to 56.4×–9647.4× longer than our MUSES.
Permission revocation. Figure 8 illustrates the end-to-end
delay to finish re-encryption of the search index of FP-HSE,
DORY, and MUSES. It is noticeable that when increasing the
number of documents, the end-to-end delay of all schemes
grows linearly but by varying degrees. MUSES takes about
2.0s (resp. 183.1s) to update a search index including key-
word representations of 1K (resp. 500K) documents. For
DORY, its latency is around 0.3s and 336.6s, respectively,
which is 1.6×–2.0× slower than MUSES starting from 214

documents. FP-HSE incurs the largest overhead to re-encrypt
the search index due to its larger index size. As a result, it
takes 1.6s–736.1s, which is 2.3×–6.1× larger than MUSES.

6.1.3 Performance under varied parameters

Varying network bandwidths. Figure 9 demonstrates the
end-to-end latency of keyword search and permission revoca-
tion of different schemes w.r.t various connection bandwidths.
The search delay (Figure 9a) is measured in the case of 150
writers and the permission revocation delay (Figure 9b) is
measured in the typical case of 216 ≈ 64K documents. As
search operations of FP-HSE incur the lowest communication
overhead, its performance is barely affected by varying net-
work bandwidths, where it takes around 1.5×103s to finish
a search operation. The end-to-end delay of MUSES slightly
decreases when increasing the network bandwidth, where it
takes 13.9s with 5 Mbps, and decreases to 10.8s with 30 Mbps,
while DORY takes 52.6s and 14.9s, respectively. In permis-
sion revocation, since both DORY and FP-HSE need to down-
load and upload the search index again, their latency decreases
significantly when the network bandwidth is higher, in which
DORY takes 99.6s–25.8s, and FP-HSE takes 402.6s–67.2s,
corresponding to the bandwidths 5 Mbps–30 Mbps. By con-
trast, MUSES incurs a delay of 27.5s–15.3s to finish a permis-

2592 33rd USENIX Security Symposium USENIX Association

511 2047 8191 32767
102

103

104

105

ns

B
/W

(K
B

)(
lo

g)

MUSES DORY

FP-HSE

(a) Reader’s bandwidth

511 2047 8191 32767
100

101

102

103

104

ns
D

el
ay

(s
)(

lo
g)

MUSES DORY

FP-HSE

(b) E2E delay

Figure 10: Keyword search performance with varying ns.

215 216 217 218 219
101

102

103

104

105

documents

B
/W

(K
B

)

MUSES DORY

FP-HSE

(a) Reader’s bandwidth

215 216 217 218 219
100

101

102

103

104

documents

D
el

ay
(s

)

MUSES DORY

FP-HSE

(b) E2E delay

Figure 11: Keyword search performance w/ varying database sizes.

sion revocation, where most communication overhead is for
transmitting secret shares of KH-PRF keys to the servers.

Varying search result sizes. We present the performance of
MUSES and other schemes with varying search result sizes
ns (from 511 to 32767) in Figure 10. We consider 25 writers
each having N = 217 documents and the keyword universe of
94,549 (with the corresponding BF parameter m= 2520). The
bandwidth of MUSES increases from 408.9 KB to 3558.9 KB,
respectively, which is 5.2×–45.0× smaller than DORY (Fig-
ure 10a). The corresponding delay increases from 3.6s to 4.9s,
which is 2.7×–3.7× and 435.2×–590.3× faster than DORY
and FP-HSE, respectively (Figure 10b).

Varying database sizes. We present the search performance
of MUSES and other schemes with varying dataset sizes N
(from 215 to 219 documents per writer) in Figure 11. In this
experiment, we fix the number of writers to be 25. When
increasing the number of documents in the dataset, it also
increases the size of the keyword universe (from 43,209 to
168,770) and the search result size (from 255 to 4095). As
shown in Figure 11a, the bandwidth cost of MUSES slightly
increases from 0.4 MB to 0.7 MB while DORY and FP-HSE
increase from 4.5 MB to 71.9 MB and 8.6 KB–137.6 KB, re-
spectively. That means MUSES incurs 12.0×–97.0× smaller
bandwidth overhead than DORY and 5.5× larger than FP-
HSE for 219 documents. Figure 11b presents the correspond-
ing search delay of MUSES. Specifically, MUSES takes about
2.0s–14.8s while DORY takes 3.1s–58.1s and FP-HSE takes
976.1s–3812.6s. Thus, MUSES is 1.6×–3.9× and 257.9×–

2 3 4 5 6
5

10

15

20

servers

D
el

ay
(s

)

< 1ms 40ms

20ms 60ms

(a) Keyword search

2 3 4 5 6
15

20

25

30

servers

D
el

ay
(s

)

< 1ms 40ms

20ms 60ms

(b) Permission revocation

Figure 12: MUSES latency with varying numbers of servers.

631.8× faster than DORY and FP-HSE, respectively.
Varying numbers of servers. To achieve a higher privacy
threshold, more servers can be added to the system. Figure 12
illustrates the end-to-end delay of keyword search and per-
mission revocation on 216 documents of 100 writers with
varying numbers of servers (from 2 to 6) and inter-server net-
work latencies (from 1ms to 60ms). In MUSES, adding more
servers does not significantly increase the online computation
work of each server. Instead, it requires more communication
rounds between the servers to forward and open the shuffled
search output. In addition, a small amount of extra overhead
in search operations is put on the reader to create and send
more DPF keys, secret shares of KH-PRF keys, as well as
padding values when there are more servers in the system.
The server network latency does not significantly impact the
search delay. As shown in Figure 12a, searching takes 7.4s-
8.6s under 1ms network latency while it takes 10.3s-13.8s
under 60ms latency. In permission revocation, having more
servers increases network traffic of the system because the
servers need to broadcast their components for updating en-
crypted index to each other. Also, the writer has to send the
secret-shares of the previous and fresh KH-PRF keys to all
servers. As shown in Figure 12b, revoking permission takes
16.5s-23.8s under 1ms latency (with 2 to 6 servers), while it
takes 20.1s-25.2s under 60ms latency.

6.1.4 Setup Time and Document Update

Figure 13a shows the setup time of MUSES including writer
processing time and communication delay. Specifically, the
writer takes 9.0s–217.3s to create an encrypted index and its
auxiliary components for a database of 215–219 documents.
Transmitting all these components to the servers takes 54.3s–
1312.9s under network bandwidth 20 Mbps.

Figure 13b presents the update delay of MUSES, DORY,
and FP-HSE. We measure the latency of FP-HSE in document
update in two cases. The worst case is when all keywords of
the updated document are new (FP-HSE-new), and the best
case is when all keywords have appeared (FP-HSE-exist). For
each new keyword, FP-HSE-new needs two public-key pair-
ings to generate a new search token, thus its cost is linear to
the number of new keywords, while DORY, FP-HSE-exist and
our scheme remain nearly unchanged. MUSES takes about

USENIX Association 33rd USENIX Security Symposium 2593

215 216 217 218 219
0

500

1,000

1,500

2,000

docs

D
el

ay
(s

)

Writer Proc. Comm.

(a) Setup time

100 200 300 400 500 600
100

101

102

103

104

updated keywords per doc
D

el
ay

(m
s)

(l
og

)

FP-HSE-new MUSES

FP-HSE-exist DORY

(b) Document update

Figure 13: E2E setup time and document update delay

38.7ms to update the index per document update, while FP-
HSE-new takes 0.8s–4.9s for the cases increasing from 100 to
600 keywords, and DORY takes about 5.4ms. The update la-
tency of FP-HSE-exist slightly grows from 53.9ms to 57.1ms
as it does not incur pairing operations.

6.1.5 Storage overhead

In MUSES, each writer stores a 256-bit secret key and the
reader stores a 256-bit private key. As MUSES utilizes LWR-
based KH-PRF in [11], each bit of the search index is en-
crypted to a 10-bit ciphertext in Zp where p = 210. Each
column of the index is encrypted by a separate key of size
1 KB. Thus, for a database with 215 documents, the size
of EIDX, STkn, and st is approximately 78.1MB, 2.05MB,
and 0.25MB, respectively. In total, the server storage cost
for each writer is approximately 80.4MB, which goes up to
12.1GB for 150 writers. For the largest database in our exper-
iment (i.e., 219 documents), the server storage cost per writer
is approximately 2.0GB, which goes up to 48.9GB for 25
writers. Note that in MUSES, the storage cost depends on
the number of documents N and the number of keywords per
document, but not search result size ns.

7 Related Work

SSE. Song et al. [69] were the first to propose and for-
malize SE. Secure SSE schemes permit encrypted search
on encrypted data via an encrypted index with improved
security (e.g., forward privacy [12, 55], backward privacy
[13, 40, 72, 73]), efficiency (e.g., [19, 29]), query function-
ality (e.g., [52]) and/or updatability (e.g., [18, 42, 48, 49, 71]).
Most SSE schemes are vulnerable to statistical inference at-
tacks [16, 50, 66, 67, 81], some of which exploit fundamen-
tal leakage in SSE (e.g., search pattern [54, 59, 65], access
pattern [46], volume pattern [56], file-injection [85, 86]). Re-
cently, Xu et al. [81] showed that the desirable security prop-
erties of SSE (e.g., forward/backward privacy) may not be
sufficient to prevent devastating leakage-abuse attacks.

While SSE mainly supports single-user queries, several
attempts (e.g., [20, 51] have been proposed to enable multi-

user functionalities. Chamani et al. [20] proposed a multi-
user SSE scheme that supports data and query policy control
along with verifiability using blockchain. The scheme in [51]
permits a reader to query encrypted data without interacting
with the data owner using some helper users. Some other
schemes permit multi-user functionalities by requiring all
users to be trusted [27] or using costly cryptographic protocols
such as multi-party computation [35,47]. The scheme in [47]
uses two non-colluding custodians executing garbled circuit to
generate search tokens for readers. Its search follows standard
SSE so it leaks pattern information (e.g., search, volume,
result). Leakage-suppression technique [39] can prevent some
pattern leakage; however, it fits more in the single-user setting
due to the costly rebuild process. When using it in multi-user
settings (separate reader and writers), the writer needs to keep
track of the reader’s activities to rebuild its index accordingly
for security. Multi-key SSE [51,79] provides decentralization
between users but does not prevent pattern leakages.

PKSE. PKSE schemes such as [7, 10, 32, 83] can support
multi-writer setting, but they do not adapt to forward privacy,
which might lead to injection attacks [86]. Although hybrid-
based model [76] can ensure forward privacy, it requires each
writer to be stateful and present to rebuild encrypted tokens
periodically. In addition, most PKSE systems are vulnerable
to KGA. Some PKSE schemes can prevent KGA, but they
require a dedicated trusted third party [53, 58, 77].

Oblivious platforms. Some oblivious storage platforms em-
ploy ORAM and/or PIR primitives to hide search patterns
during data operations (e.g., data sharing/access [22–24, 27,
60,62], search [30,35,38,45,64]. However, these schemes in-
cur a large communication overhead, which costs O(N) with
N is the number of documents in the collection. Differential
Privacy-based technique [68] can obfuscate search access
patterns, but it incurs high computation and latency.

Hardware-assisted SE. Trusted hardware (e.g., Intel SGX
[25]) was used to build practical oblivious platforms with
diverse functionalities (e.g., keyword search [37,44,63], SQL
queries [34,36], data storage [26,43], oblivious memory [74]).
These platforms require a security assumption on the hard-
ware (e.g., isolation, tamper-free, side-channel resistance).

Acknowledgment

We would like to thank the shepherd and the anonymous
reviewers for their valuable comments. This research was
supported by an unrestricted gift from Robert Bosch, 4-VA,
and the Commonwealth Cyber Initiative (CCI), an invest-
ment in the advancement of cyber R&D, innovation, and
workforce development. For more information about CCI,
visit www.cyberinitiative.org. Rouzbeh Behnia was sup-
ported by the USF Sarasota-Manatee campus Office of Re-
search through the Interdisciplinary Research Grant program.

2594 33rd USENIX Security Symposium USENIX Association

www.cyberinitiative.org

References

[1] Openssl: Cryptography and ssl/tls toolkit. https://www.
openssl.org.

[2] Zeromq: An open-source universal messaging library. https:
//github.com/zeromq/libzmq.

[3] Enron dataset. https://www.cs.cmu.edu/~enron, 2015.

[4] Michel Abdalla, Mihir Bellare, Dario Catalano, Eike Kiltz,
Tadayoshi Kohno, Tanja Lange, John Malone-Lee, Gregory
Neven, Pascal Paillier, and Haixia Shi. Searchable encryption
revisited: Consistency properties, relation to anonymous ibe,
and extensions. J. Cryptology, 21:350–391, 01 2008.

[5] Ghous Amjad, Sarvar Patel, Giuseppe Persiano, Kevin Yeo,
and Moti Yung. Dynamic volume-hiding encrypted multi-
maps with applications to searchable encryption. Proc. Priv.
Enhancing Technol., 2023(1):417–436, 2023.

[6] Nuttapong Attrapadung, Goichiro Hanaoaka, Takahiro Mat-
suda, Hiraku Morita, Kazuma Ohara, Jacob C. N. Schuldt,
Tadanori Teruya, and Kazunari Tozawa. Oblivious linear group
actions and applications. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Se-
curity, CCS ’21, page 630–650, New York, NY, USA, 2021.
Association for Computing Machinery.

[7] Adam J. Aviv, Michael E. Locasto, Shaya Potter, and Ange-
los D. Keromytis. Ssares: Secure searchable automated remote
email storage. In Twenty-Third Annual Computer Security Ap-
plications Conference (ACSAC 2007), pages 129–139, 2007.

[8] Rouzbeh Behnia, Muslum Ozgur Ozmen, and Attila Altay
Yavuz. Lattice-based public key searchable encryption from
experimental perspectives. IEEE Transactions on Dependable
and Secure Computing, 17(6):1269–1282, 2020.

[9] Burton H Bloom. Space/time trade-offs in hash coding with
allowable errors. Communications of the ACM, 13(7):422–426,
1970.

[10] Dan Boneh, Giovanni Di Crescenzo, Rafail Ostrovsky, and
Giuseppe Persiano. Public key encryption with keyword search.
Cryptology ePrint Archive, Paper 2003/195, 2003. https:
//eprint.iacr.org/2003/195.

[11] Dan Boneh, Kevin Lewi, Hart William Montgomery, and
Ananth Raghunathan. Key homomorphic prfs and their ap-
plications. In Annual International Cryptology Conference,
2013.

[12] Raphael Bost. ∑oφoς: Forward secure searchable encryp-
tion. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’16, page
1143–1154, New York, NY, USA, 2016. Association for Com-
puting Machinery.

[13] Raphael Bost, Brice Minaud, and Olga Ohrimenko. Forward
and backward private searchable encryption from constrained
cryptographic primitives. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Secu-
rity, pages 1465–1482, 2017.

[14] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing. In EUROCRYPT (2), pages 337–367. Springer, 2015.

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret
sharing: Improvements and extensions. In Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communi-
cations Security, CCS ’16, page 1292–1303, New York, NY,
USA, 2016. Association for Computing Machinery.

[16] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart.
Leakage-abuse attacks against searchable encryption. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, page 668–679, New
York, NY, USA, 2015. Association for Computing Machinery.

[17] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S.
Jutla, Hugo Krawczyk, Marcel-Catalin Rosu, and Michael
Steiner. Dynamic searchable encryption in very-large
databases: Data structures and implementation. IACR Cryptol.
ePrint Arch., 2014:853, 2014.

[18] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo
Krawczyk, Marcel-Cătălin Roşu, and Michael Steiner.
Highly-scalable searchable symmetric encryption with support
for boolean queries. In Annual cryptology conference, pages
353–373. Springer, 2013.

[19] Javad Ghareh Chamani, Dimitrios Papadopoulos, Moham-
madamin Karbasforushan, and Ioannis Demertzis. Dynamic
searchable encryption with optimal search in the presence of
deletions. In Kevin R. B. Butler and Kurt Thomas, editors, 31st
USENIX Security Symposium, USENIX Security 2022, pages
2425–2442. USENIX Association, 2022.

[20] Javad Ghareh Chamani, Yun Wang, Dimitrios Papadopou-
los, Mingyang Zhang, and Rasool Jalili. Multi-user dynamic
searchable symmetric encryption with corrupted participants.
IEEE Transactions on Dependable and Secure Computing,
20(1):114–130, 2023.

[21] Melissa Chase, Esha Ghosh, and Oxana Poburinnaya. Secret-
shared shuffle. In Advances in Cryptology – ASIACRYPT 2020:
26th International Conference on the Theory and Application
of Cryptology and Information Security, Proceedings, Part III,
page 342–372. Springer-Verlag, 2020.

[22] Weikeng Chen, Thang Hoang, Jorge Guajardo, and Attila A.
Yavuz. Titanium: A metadata-hiding file-sharing system with
malicious security. Cryptology ePrint Archive, Paper 2022/051,
2022. https://eprint.iacr.org/2022/051.

[23] Weikeng Chen and Raluca Ada Popa. Metal: a metadata-hiding
file-sharing system. In NDSS Symposium 2020, 2020.

[24] Sherman SM Chow, Katharina Fech, Russell WF Lai, and
Giulio Malavolta. Multi-client oblivious ram with poly-
logarithmic communication. In International Conference on
the Theory and Application of Cryptology and Information
Security, pages 160–190. Springer, 2020.

[25] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryp-
tology ePrint Archive, 2016.

[26] Emma Dauterman, Vivian Fang, Ioannis Demertzis, Natacha
Crooks, and Raluca Ada Popa. Snoopy: Surpassing the scalabil-
ity bottleneck of oblivious storage. In Proceedings of the ACM
SIGOPS 28th Symposium on Operating Systems Principles,
pages 655–671, 2021.

USENIX Association 33rd USENIX Security Symposium 2595

https://www.openssl.org
https://www.openssl.org
https://github.com/zeromq/libzmq
https://github.com/zeromq/libzmq
https://www.cs.cmu.edu/~enron
https://eprint.iacr.org/2003/195
https://eprint.iacr.org/2003/195
https://eprint.iacr.org/2022/051

[27] Emma Dauterman, Eric Feng, Ellen Luo, Raluca Ada Popa,
and Ion Stoica. Dory: An encrypted search system with dis-
tributed trust. In Proceedings of the 14th USENIX Conference
on Operating Systems Design and Implementation, OSDI’20,
USA, 2020. USENIX Association.

[28] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion
Stoica. Waldo: A private time-series database from function
secret sharing. In 2022 IEEE Symposium on Security and
Privacy (SP), pages 2450–2468, 2022.

[29] Ioannis Demertzis, Javad Ghareh Chamani, Dimitrios Pa-
padopoulos, and Charalampos Papamanthou. Dynamic search-
able encryption with small client storage. 01 2020.

[30] Ioannis Demertzis, Dimitrios Papadopoulos, and Charalampos
Papamanthou. Searchable encryption with optimal locality:
Achieving sublogarithmic read efficiency. In Advances in Cryp-
tology – CRYPTO 2018: 38th Annual International Cryptology
Conference, Santa Barbara, CA, USA, August 19–23, 2018,
Proceedings, Part I, page 371–406, Berlin, Heidelberg, 2018.
Springer-Verlag.

[31] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy,
and Frederik Vercauteren. Saber: Module-lwr based key ex-
change, cpa-secure encryption and cca-secure kem. Cryptol-
ogy ePrint Archive, Paper 2018/230, 2018. https://eprint.
iacr.org/2018/230.

[32] Nabeil Eltayieb, Rashad Elhabob, Alzubair Hassan, and Fagen
Li. An efficient attribute-based online/offline searchable en-
cryption and its application in cloud-based reliable smart grid.
Journal of Systems Architecture, 98:165–172, 2019.

[33] Saba Eskandarian and Dan Boneh. Clarion: Anonymous com-
munication from multiparty shuffling protocols. In 29th Annual
Network and Distributed System Security Symposium, NDSS
2022, San Diego, California, USA, April 24-28, 2022. The In-
ternet Society, 2022.

[34] Saba Eskandarian and Matei Zaharia. Oblidb: Oblivious query
processing for secure databases. Proceedings of the VLDB
Endowment, 13(2), 2019.

[35] Brett Hemenway Falk, Steve Lu, and Rafail Ostrovsky.
Durasift: A robust, decentralized, encrypted database support-
ing private searches with complex policy controls. In Proceed-
ings of the 18th ACM Workshop on Privacy in the Electronic
Society, WPES’19, page 26–36, New York, NY, USA, 2019.
Association for Computing Machinery.

[36] Benny Fuhry, Jayanth Jain H. A, and Florian Kerschbaum.
Encdbdb: Searchable encrypted, fast, compressed, in-memory
database using enclaves. In 51st Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, DSN
2021, Taipei, Taiwan, June 21-24, 2021, pages 438–450. IEEE,
2021.

[37] Benny Fuhry, Raad Bahmani, Ferdinand Brasser, Florian Hahn,
Florian Kerschbaum, and Ahmad-Reza Sadeghi. Hardidx:
Practical and secure index with sgx. In IFIP Annual Conference
on Data and Applications Security and Privacy, pages 386–
408. Springer, 2017.

[38] Sanjam Garg, Payman Mohassel, and Charalampos Papaman-
thou. Tworam: Efficient oblivious ram in two rounds with

applications to searchable encryption. In Proceedings, Part
III, of the 36th Annual International Cryptology Conference
on Advances in Cryptology — CRYPTO 2016 - Volume 9816,
page 563–592, Berlin, Heidelberg, 2016. Springer-Verlag.

[39] Marilyn George, Seny Kamara, and Tarik Moataz. Structured
encryption and dynamic leakage suppression. In Anne Can-
teaut and François-Xavier Standaert, editors, Advances in Cryp-
tology – EUROCRYPT 2021, pages 370–396, Cham, 2021.
Springer International Publishing.

[40] Javad Ghareh Chamani, Dimitrios Papadopoulos, Charalam-
pos Papamanthou, and Rasool Jalili. New constructions for
forward and backward private symmetric searchable encryp-
tion. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’18, page
1038–1055, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[41] Niv Gilboa and Yuval Ishai. Distributed point functions and
their applications. In EUROCRYPT, 2014.

[42] Florian Hahn and Florian Kerschbaum. Searchable encryption
with secure and efficient updates. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications
Security, CCS ’14, page 310–320, New York, NY, USA, 2014.
Association for Computing Machinery.

[43] Thang Hoang, Rouzbeh Behnia, Yeongjin Jang, and Attila A
Yavuz. Mose: Practical multi-user oblivious storage via secure
enclaves. In Proceedings of the Tenth ACM Conference on
Data and Application Security and Privacy, pages 17–28, 2020.

[44] Thang Hoang, Muslum Ozgur Ozmen, Yeongjin Jang, and
Attila A Yavuz. Hardware-supported oram in effect: Practical
oblivious search and update on very large dataset. Proceedings
on Privacy Enhancing Technologies, 2019(1), 2019.

[45] Thang Hoang, Attila Yavuz, F. Durak, and Jorge Guajardo. A
multi-server oblivious dynamic searchable encryption frame-
work. Journal of Computer Security, 27:1–28, 09 2019.

[46] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantar-
cioglu. Access pattern disclosure on searchable encryption:
Ramification, attack and mitigation. In NDSS, 2012.

[47] Seny Kamara, Tarik Moataz, Andrew Park, and Lucy Qin. A
decentralized and encrypted national gun registry. In 2021
IEEE Symposium on Security and Privacy (SP), pages 1520–
1537, 2021.

[48] Seny Kamara and Charalampos Papamanthou. Parallel and
dynamic searchable symmetric encryption. In International
conference on financial cryptography and data security, pages
258–274. Springer, 2013.

[49] Seny Kamara, Charalampos Papamanthou, and Tom Roeder.
Dynamic searchable symmetric encryption. In Proceedings of
the 2012 ACM conference on Computer and communications
security, pages 965–976, 2012.

[50] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam
O’Neill. Generic attacks on secure outsourced databases.
In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page
1329–1340, New York, NY, USA, 2016. Association for Com-
puting Machinery.

2596 33rd USENIX Security Symposium USENIX Association

https://eprint.iacr.org/2018/230
https://eprint.iacr.org/2018/230

[51] Shabnam Kasra Kermanshahi, Joseph K. Liu, Ron Steinfeld,
Surya Nepal, Shangqi Lai, Randolph Loh, and Cong Zuo.
Multi-client cloud-based symmetric searchable encryption.
IEEE Transactions on Dependable and Secure Computing,
18(5):2419–2437, 2021.

[52] Florian Kerschbaum and Anselme Tueno. An efficiently search-
able encrypted data structure for range queries. In European
Symposium on Research in Computer Security, 2017.

[53] Aggelos Kiayias, Ozgur Oksuz, Alexander Russell, Qiang Tang,
and Bing Wang. Efficient encrypted keyword search for multi-
user data sharing. In European symposium on research in
computer security, pages 173–195. Springer, 2016.

[54] Evgenios M. Kornaropoulos, Charalampos Papamanthou, and
Roberto Tamassia. The state of the uniform: Attacks on en-
crypted databases beyond the uniform query distribution. In
2020 IEEE Symposium on Security and Privacy (SP), pages
1223–1240, 2020.

[55] Russell W. F. Lai and Sherman S. M. Chow. Forward-secure
searchable encryption on labeled bipartite graphs. In Inter-
national Conference on Applied Cryptography and Network
Security, 2017.

[56] Steven Lambregts, Huanhuan Chen, Jianting Ning, and Kaitai
Liang. Val: Volume and access pattern leakage-abuse attack
with leaked documents. In European Symposium on Research
in Computer Security, pages 653–676. Springer, 2022.

[57] Tung Le, Rouzbeh Behnia, Jorge Guajardo, and Thang Hoang.
MUSES: Efficient Multi-user Searchable Encrypted Database.
Accepted in USENIX Security Symposium, 2024. https:
//eprint.iacr.org/2023/720.

[58] Hongbo Li, Qiong Huang, Jianye Huang, and Willy Susilo.
Public-key authenticated encryption with keyword search sup-
porting constant trapdoor generation and fast search. IEEE
Transactions on Information Forensics and Security, 18:396–
410, 2023.

[59] Chang Liu, Liehuang Zhu, Mingzhong Wang, and Yu-An Tan.
Search pattern leakage in searchable encryption: Attacks and
new construction. Inf. Sci., 265:176–188, may 2014.

[60] Jacob R Lorch, Bryan Parno, James Mickens, Mariana
Raykova, and Joshua Schiffman. Shroud: Ensuring private ac-
cess to {Large-Scale} data in the data center. In 11th USENIX
Conference on File and Storage Technologies (FAST 13), pages
199–213, 2013.

[61] Fucai Luo, Haiyan Wang, Changlu Lin, and Xingfu Yan.
Abaeks: Attribute-based authenticated encryption with key-
word search over outsourced encrypted data. IEEE Transac-
tions on Information Forensics and Security, 18:4970–4983,
2023.

[62] Travis Mayberry, Erik-Oliver Blass, and Agnes Hui Chan. Ef-
ficient private file retrieval by combining oram and pir. NDSS
2013, 2013.

[63] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro
Chiesa, and Raluca Ada Popa. Oblix: An efficient oblivi-
ous search index. In 2018 IEEE Symposium on Security and
Privacy (SP), pages 279–296. IEEE, 2018.

[64] Muhammad Naveed. The fallacy of composition of oblivious
ram and searchable encryption. Cryptology ePrint Archive,
Paper 2015/668, 2015. https://eprint.iacr.org/2015/
668.

[65] Simon Oya and Florian Kerschbaum. Hiding the access pattern
is not enough: Exploiting search pattern leakage in searchable
encryption. In 30th USENIX Security Symposium (USENIX
Security 21), pages 127–142. USENIX Association, August
2021.

[66] Simon Oya and Florian Kerschbaum. IHOP: Improved statis-
tical query recovery against searchable symmetric encryption
through quadratic optimization. In 31st USENIX Security Sym-
posium (USENIX Security 22), pages 2407–2424, Boston, MA,
August 2022. USENIX Association.

[67] David Pouliot and Charles V. Wright. The shadow nemesis:
Inference attacks on efficiently deployable, efficiently search-
able encryption. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’16, page 1341–1352, New York, NY, USA, 2016. Association
for Computing Machinery.

[68] Zhiwei Shang, Simon Oya, Andreas Peter, and Florian Ker-
schbaum. Obfuscated access and search patterns in searchable
encryption. In 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, 2021.

[69] Dawn Xiaoding Song, D. Wagner, and A. Perrig. Practical
techniques for searches on encrypted data. In Proceeding 2000
IEEE Symposium on Security and Privacy. S&P 2000, pages
44–55, 2000.

[70] Emil Stefanov, Marten Van Dijk, Elaine Shi, T.-H. Hubert Chan,
Christopher Fletcher, Ling Ren, Xiangyao Yu, and Srinivas De-
vadas. Path oram: An extremely simple oblivious ram protocol.
J. ACM, 65(4), apr 2018.

[71] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi.
Practical dynamic searchable encryption with small leakage.
Cryptology ePrint Archive, Paper 2013/832, 2013. https:
//eprint.iacr.org/2013/832.

[72] Shi-Feng Sun, Ron Steinfeld, Shangqi Lai, Xingliang Yuan,
Amin Sakzad, Joseph K Liu, Surya Nepal, and Dawu Gu. Prac-
tical non-interactive searchable encryption with forward and
backward privacy. In NDSS, 2021.

[73] Shi-Feng Sun, Xingliang Yuan, Joseph K Liu, Ron Steinfeld,
Amin Sakzad, Viet Vo, and Surya Nepal. Practical backward-
secure searchable encryption from symmetric puncturable en-
cryption. In Proceedings of the 2018 ACM SIGSAC Conference
on Computer and Communications Security, pages 763–780,
2018.

[74] Afonso Tinoco, Sixiang Gao, and Elaine Shi. Enigmap: Signal
should use oblivious algorithms for private contact discovery.
Cryptology ePrint Archive, 2022.

[75] Jiafan Wang and Sherman Chow. Forward and backward-
secure range-searchable symmetric encryption. Proceedings
on Privacy Enhancing Technologies, 2022:28–48, 01 2022.

[76] Jiafan Wang and Sherman S. M. Chow. Omnes pro uno: Practi-
cal Multi-Writer encrypted database. In 31st USENIX Security
Symposium (USENIX Security 22), pages 2371–2388, Boston,
MA, August 2022. USENIX Association.

USENIX Association 33rd USENIX Security Symposium 2597

https://eprint.iacr.org/2023/720
https://eprint.iacr.org/2023/720
https://eprint.iacr.org/2015/668
https://eprint.iacr.org/2015/668
https://eprint.iacr.org/2013/832
https://eprint.iacr.org/2013/832

[77] Mingyue Wang, Yinbin Miao, Yu Guo, Hejiao Huang, Cong
Wang, and Xiaohua Jia. Aesm2 attribute-based encrypted
search for multi-owner and multi-user distributed systems.
IEEE Transactions on Parallel and Distributed Systems,
34(1):92–107, 2023.

[78] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. EMP-
toolkit: Efficient MultiParty computation toolkit. https://
github.com/emp-toolkit, 2016.

[79] Yun Wang and Dimitrios Papadopoulos. Multi-user collusion-
resistant searchable encryption with optimal search time. In
Proceedings of the 2021 ACM Asia Conference on Computer
and Communications Security, ASIA CCS ’21, page 252–264,
New York, NY, USA, 2021. Association for Computing Ma-
chinery.

[80] Pieter Wuille. libsecp256k1. https://github.com/
bitcoin-core/secp256k1.

[81] Lei Xu, Leqian Zheng, Chengzhi Xu, Xingliang Yuan, and
Cong Wang. Leakage-abuse attacks against forward and back-
ward private searchable symmetric encryption. In Proceedings
of the 2023 ACM SIGSAC Conference on Computer and Com-
munications Security, CCS ’23, page 3003–3017, New York,
NY, USA, 2023. Association for Computing Machinery.

[82] Lingling Xu, Wanhua Li, Fangguo Zhang, Rong Cheng, and
Shaohua Tang. Authorized keyword searches on public key
encrypted data with time controlled keyword privacy. IEEE
Transactions on Information Forensics and Security, 15:2096–
2109, 2020.

[83] Peng Xu, Qianhong Wu, Wei Wang, Willy Susilo, Josep
Domingo-Ferrer, and Hai Jin. Generating searchable public-
key ciphertexts with hidden structures for fast keyword search.
IEEE Transactions on Information Forensics and Security,
10(9):1993–2006, 2015.

[84] Ming Zeng, Haifeng Qian, Jie Chen, and Kai Zhang. For-
ward secure public key encryption with keyword search for
outsourced cloud storage. IEEE Transactions on Cloud Com-
puting, 10(1):426–438, 2019.

[85] Xianglong Zhang, Wei Wang, Peng Xu, Laurence T. Yang, and
Kaitai Liang. High recovery with fewer injections: Practical
binary volumetric injection attacks against dynamic searchable
encryption. In 32nd USENIX Security Symposium (USENIX
Security 23), 2023.

[86] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou.
All your queries are belong to us: The power of File-Injection
attacks on searchable encryption. In 25th USENIX Security
Symposium (USENIX Security 16), pages 707–720, Austin, TX,
August 2016. USENIX Association.

A Query-Independent Preprocessing

We analyze preprocessing cost of the search protocol in
MUSES. The overhead mostly comes from executing Share
Translation protocol (ST) between two servers: (∆∆∆;a,b)←
TSS.ShrTrns(π;1λ), which lets one server obtain a,b, and
the other server learn the corresponding translation function
∆∆∆← b−π(a) without revealing the permutation π. As the

input/output of the preprocessing is independent of search
queries, the precomputed materials can be stored in a tempo-
rary memory and used when a search happens. The commu-
nication and computation complexity of the primitive Share
Translation protocol in [21] is O(n logn) and O(n2), respec-
tively, where n is the number of elements. We analyze the
communication and computation cost of preprocessing for
a search query happening on a writer subset W ′ as follows,
in which the number of servers L is a small constant and
omitted. As the preprocessing of ΠLOS executes ST |W ′|
times w.r.t. the number of elements N +ns (the total bound
on the number of documents and padded values), the com-
munication and computation cost for preprocessing of ΠLOS

is O(|W ′|(N + ns) log(N + ns)) and O(|W ′|(N + ns)
2), re-

spectively. Similarly, the preprocessing of ΠLOC executes ST
|W ′|N times w.r.t. the number of elements K +1, where K is
a BF parameter, the communication and computation cost for
preprocessing of ΠLOC is O(|W ′|N(K + 1) log(K + 1)) and
O(|W ′|N(K +1)2), respectively.

B Preventing rollback attacks

In the “rollback” attacks, the malicious server can omit some
writer’s update, and present the outdated data to the reader. We
present a (simple) extension to our semi-honest MUSES con-
struction to prevent such attacks. The high-level idea is to
employ additional servers and perform “pair-wise” checking
of the responses from different subsets of servers in process-
ing the reader’s request. For simplicity, assume our original
MUSES scheme uses two servers. We add one more server to
detect rollback attacks as follows. Let W ′ be the writer subset
and kw is the keyword that the reader would like to search. For
each pair of servers Pi,P j ∈ {P1,P2,P3}, the reader executes
the following:
• si j = (si,s j)← SearchToken(kw,W ′)
• Oi j← Search(si j,sk,{(EIDXw,STknw,stw)}w∈[nw])

WLOG, assume (P2,P3) are honest and P1 is corrupt, in
which it uses a mutated search index EIDX′w = EIDXw + ε

(compared with EIDXw in P2 and P3). As DPF and KH-PRF
are computed on EIDX′w, there will be an error in P1’s com-
putation, making the responses O12, O13 ̸= O23.

By checking the consistency of O12, O13, and O23, the
reader can tell whether there is a rollback attack happens,
and abort the protocol accordingly. Note that this strategy
can only detect the rollback attack, a special case of mali-
cious behavior on integrity, but is unable to tell which server
is corrupted. Meanwhile, a malicious adversary can deviate
from the protocol to not only compromise the integrity but
also the privacy of the reader’s query. That requires a more
comprehensive investigation to completely achieve malicious
security, which we leave as our future work.

2598 33rd USENIX Security Symposium USENIX Association

https://github.com/emp-toolkit
https://github.com/emp-toolkit
https://github.com/bitcoin-core/secp256k1
https://github.com/bitcoin-core/secp256k1

	Introduction
	Our Contributions
	Technical Highlights

	Preliminaries
	Distributed Point Function
	Key-Homomorphic PRF (KH-PRF)
	Linear Group Action

	Models
	Our Proposed Scheme
	Data Structures
	Search Procedure
	Partial decryption
	Oblivious padding
	Oblivious shuffle

	Search Permission Revocation
	Document Update

	Analysis
	Experimental Evaluation
	Overall Results
	Keyword search
	Permission revocation
	Performance under varied parameters
	blackSetup Time and Document Update
	Storage overhead

	Related Work
	Query-Independent Preprocessing
	Preventing rollback attacks

